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Abstract
We review here some recent work in the field of quantum annealing, alias
adiabatic quantum computation. The idea of quantum annealing is to perform
optimization by a quantum adiabatic evolution which tracks the ground state
of a suitable time-dependent Hamiltonian, where ‘h̄’ is slowly switched off.
We illustrate several applications of quantum annealing strategies, starting
from textbook toy-models—double-well potentials and other one-dimensional
examples, with and without disorder. These examples display in a clear way the
crucial differences between classical and quantum annealing. We then discuss
applications of quantum annealing to challenging hard optimization problems,
such as the random Ising model, the travelling salesman problem and Boolean
satisfiability problems. The techniques used to implement quantum annealing
are either deterministic Schrödinger’s evolutions, for the toy models, or path-
integral Monte Carlo and Green’s function Monte Carlo approaches, for the hard
optimization problems. The crucial role played by disorder and the associated
non-trivial Landau–Zener tunnelling phenomena is discussed and emphasized.

PACS numbers: 03.67.Lx, 75.10.Nr, 03.65.Xp, 02.70.Ss, 05.10.Ln, 07.05.Tp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optimization has to do with finding the minimum of some given cost function; it is a very
common task in science and a self-standing field of research. Quite often, the cost (or energy)
function one is seeking to optimize depends on a large number N of variables (either discrete
or continuous), and because of multiple constraints—which may lead to frustration—it will
possess many local minima, a feature that makes the search for the optimal solution generically
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‘hard’. As non-trivial examples of hard energy functions, one can mention (i) finding the
ground-state energy configuration of an assembly of N Ising spins with frustrating interactions
(a spin glass) [1]; (ii) finding the minimal length itinerary of a travelling salesman problem
(TSP) visiting N cities [2]; (iii) finding the satisfying bit assignment for an N-bit Boolean
formula with many logical clauses each involving k bits (k-SAT) [3]. These examples, taken
from the fields of physics (i) and computer science (ii, iii), are just a small repertoire from
the vast world of disordered/frustrated physical systems, and of combinatorial optimization
problems [3]; we will use them, in the present work, as our favourite illustration and benchmark
problems. Common to all of them is the fact that the dimension of the configuration space of
the N input variables increases exponentially with N—it is 2N in the Ising and k-SAT cases,
(N − 1)! in the TSP case—and that no obvious rule is available to find the optimal solution in
such a space. On the other hand, the space is simply too large for an exhaustive enumeration
to be feasible beyond a relatively small value of N (N ∼ 30).

Theoretical computer science has classified the complexity of a given problem according
to the time (and space) resources needed to solve it, in its worst-case instance, on a classical
computer [4]. Without entering the details of such a classification (that will not be relevant in
our work), we just mention that a problem belongs to the P or to the NP complexity classes if a
polynomial (in N) algorithm is or is not known, respectively, which is able to solve worst-case
instances. The examples quoted above all belong to the class of the NP-complete problems
(the hardest of all the NP problems [3]), except for the Ising case on some two-dimensional
lattices [5] or the 2-SAT problem, which are both polynomial.

Returning to physics, classical statistical mechanics has contributed a crucial input of
concepts and methods to the field of optimization, starting from the pioneering idea of thermal
simulated annealing by Kirkpatrick et al [6], down to the recent advances in the applications
of replica methods and cavity techniques to general combinatorial optimization problems [7].
In simulated annealing, the optimization problem is tackled by the introduction of a (real or
fictitious) temperature variable, which is slowly lowered (annealed) in the course of a Monte
Carlo or molecular dynamics simulation [6]. This device allows exploration of the large
configuration space of the problem at hand, effectively avoiding trapping at unfavourable local
minima through thermal hopping above energy barriers. It makes for a very simple, robust
and effective minimization tool [8, chapter 10], often much more effective than standard,
gradient-based, minimization methods.

The idea of quantum annealing (QA) is an elegant and fascinating alternative to
classical thermal simulated annealing (CA); it consists in helping the system escape the local
minima using quantum mechanics—by tunnelling through the barriers rather than thermally
overcoming them—with an artificial and appropriate source of quantum fluctuations (the
counterpart of the temperature) initially present and slowly (adiabatically) switched off. To
the best of our knowledge, this idea was first explicitly formulated, and tested in numerical
simulations, in the early 1990s [9–11]. In the Ising spin glass context—more precisely,
for the infinite range Sherrington–Kirkpatrick model [12]—the idea that the addition of a
transverse field quantum term −�

∑
i σ

x
i (σx

i being Pauli matrices at site i) might help the
system in tunnelling through the infinitely high classical barriers separating the infinitely many
metastable states was indeed put forward even earlier, in [13, 14]. More recently, experimental
evidence in the disordered Ising ferromagnet LiHo0.44Y0.56F4 in a transverse magnetic field
showed that the QA strategy is not only feasible but presumably winning in certain cases
[15, 16].

A parallel advance, again during the 1990s and with quantum mechanics as a protagonist,
has been the blooming idea of quantum computation (QC) [17]. A remarkable result in this
field, due to Schor [18], was the proof that the problem of factorizing a large integer of N
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bits—believed to be classically NP (although not NP-complete)—can be solved with a number
of quantum operations which are polynomial in N (O(N2)), in the framework of the standard
approach to QC (the so-called circuit theory) [17].

The remainder of this Introduction will be devoted to a brief list of basic concepts and
issues.

1.1. The basic idea of quantum annealing

Let us consider QA, and concentrate discussion on classical optimization problems, where the
energy function to be optimized is represented by a classical Hamiltonian, denoted by Hcl.
In QA, one supplements the classical Hamiltonian Hcl with a suitable, in principle arbitrary,
time-dependent quantum kinetic term, Hkin(t), which is initially very large, for t � 0, and
then gradually reduced to zero in a certain annealing time τ . The total Hamiltonian one aims
at studying is therefore a time-dependent one given by H(t) = Hcl + Hkin(t), where Hkin(0)

dominates initially—that is, H(0) ≈ Hkin(0)—while, at the end of the annealing, Hkin(τ ) = 0
so that we simply recover H(τ) = Hcl. The kinetic energy Hkin(t) can be chosen quite freely,
with the only requirement of being represented by a local Hamiltonian. Using the Ising glass
case as an illustrative example, we could take

H(t) = Hcl + Hkin(t) = −
∑
〈ij〉

Jijσ
z
i σ z

j − �(t)
∑

i

σ x
i , (1)

where Hcl = −∑
〈ij〉 Jijσ

z
i σ z

j is an Edward–Anderson disordered Ising model—with σ z
i

spin-1/2 Ising variables (z-component Pauli matrices) at each site i of a lattice, and Jij random
couplings—and represents the classical problem for which we are trying to find the ground
state. Due to the fact that the nearest-neighbour spin–spin couplings Jij are frustrating (i.e.,
both positive and negative) and random, finding the ground state of Hcl is generally hard. The
choice of the kinetic term as a simple time-dependent transverse field Hkin(t) = −�(t)

∑
i σ

x
i

(with σx
i the x-component Pauli matrix at site i) is in this case very natural, as is also directly

realized in the experiment [15]. Indeed this form of Hkin is quite natural for all those problems
that can be classically formulated in terms of spin-1/2 Ising variables (or bits, as in the case
of k-SAT). The condition that Hkin(0) dominates initially is realized by �(0) � Max{|Jij |};
for �(0) → ∞, the ground-state |�0〉 of H(0) = Hcl + Hkin(0) approaches the simple product
state 2−N/2 ∏

i (|↑〉 + |↓〉), with all spins aligned in the x-direction; at the end of the annealing
�(τ) = 0, and the lowest energy of H(τ) coincides with the classical ground state of Hcl we
are looking for. At zero temperature, the quantum state of the system |�(t)〉, initially prepared
in the fully quantum ground state |�0〉 of H(t = 0), |�(t = 0)〉 = |�0〉, evolves according to
the time-dependent Scrödinger equation

ih̄
d

dt
|�(t)〉 = H(t)|�(t)〉, (2)

to reach a final state |�(t = τ)〉. The key question is then how the residual energy
Eres(τ ) = Efin(τ ) − Eopt decreases for increasing annealing time τ , where Eopt is the absolute
minimum of Hcl, and Efin(τ ) is the average energy attained by the quantum system after
evolving for a time τ , i.e.,

Eres(τ ) = Efin(τ ) − Eopt = 〈�(τ)|(Hcl − Eopt)|�(τ)〉
〈�(τ)|�(τ)〉 . (3)

Generally speaking, the question posed is obviously related to the adiabaticity of the quantum
evolution, i.e., whether the system is able, for sufficiently slow annealing (i.e., sufficiently
long τ ), to follow the instantaneous ground state of H(t). Quite generally, also, the result
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for Eres(τ ) will depend on the specific instance of the problem taken (given N, the specific
choice of the couplings {Jij }, in the Ising case), so that we have a distribution P [Eres(τ )] of
residual energies, and we can meaningfully talk about average (av) and typical (typ) residual
energies [Eres(τ )]av/typ (which might differ if the distribution is wide and non-Gaussian [19]).
A crude, but useful, classification of the ‘annealing complexity’ of a problem might then be
the following: A problem is on average/typically easy if, asymptotically for large τ ,[

Eres(τ )

N

]
av/typ

∝ τ−α, (4)

where the power-law exponent α does not vanish for N → ∞; if, in contrast, [Eres(τ )]av/typ

decreases slower than a power law, for instance as[
Eres(τ )

N

]
av/typ

∝ (log τ)−ζ , (5)

then we say that the problem is on average/typically hard. In essence, if a problem as a power-
law decrease of [Eres(τ )]av/typ then we can increase the accuracy of our annealing calculation,
reducing the residual energy by a given factor, say 2, by increasing the annealing time from
τ to 21/ατ , while, for instance, a logarithmically slow decrease would require, for the same
improvement, an annealing time τ 21/ζ

.

1.2. Quantum annealing and adiabatic quantum computation

As previously mentioned, the idea of annealing, in a quantum mechanics framework, is
inherently related to the idea of adiabaticity. Computing by adiabatic evolution of a quantum
system has become quite popular in the quantum computing (QC) community, where it is
commonly known as adiabatic quantum computation (AQC) [20]. The standard reference for
the QC community is [20], where the idea is formulated in the following alternative way: take
Hkin to be time independent, and write H(t) = (t/τ )Hcl + (1 − t/τ )Hkin, so that H(0) = Hkin

and, once again, H(τ) = Hcl. We stress, therefore, that quantum annealing and adiabatic
quantum computation are two names given by two different scientific communities to the very
same idea; we will therefore use QA and AQC interchangeably, or even together, QA–AQC. We
mention, finally, that a generalized form of AQC has been recently shown to be polynomially
equivalent [21] to the standard paradigm of QC, i.e., circuit theory, where computations are
performed by the application of a sequence of universal gates (unitary operators) to a system
of qubits [17]. In essence, if a problem can be efficiently solved by standard QC, then one can
construct Hinit and Hfinal (both local, the latter in general non-classical) such that a QA–AQC
with H(t) = (1 − t/τ )Hinit + (t/τ )Hfinal leads to an equivalent result, at the price of an extra
computational effort that scales polynomially with N. Therefore, the computational power of
standard QC and that of such a generalized QA–AQC is the same [21]. The important point,
however, is that Hfinal is not necessarily a classical Hamiltonian. Therefore, it is still not
obvious whether the computational power of QA–AQC for classical optimization problems,
where one insists in taking Hfinal = Hcl, is the same as that of standard QC. Indeed, we will
suggest that even polynomial classical optimization problems can be hard for QA–AQC.

1.3. Adiabaticity and Landau–Zener tunnelling

Returning to the problem of adiabaticity, it is quite common that for a given instance of
a problem of input size N, the Hamiltonian H(t) will have an instantaneous spectrum of
eigenvalues En(t) with a strictly positive minimum gap �min = Min0�t<τ [E1(t)−E0(t)] > 0
above the ground state. For instance, in the Ising case—more generally, in all cases in which
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the matrix elements of Hkin(t) are non-positive, and any two configurations can be connected
by the application of a suitable number of Hkin—due to the Perron–Frobenius theorem
[22, p 54ff], one can immediately conclude that the ground state of (1) for any non-vanishing
transverse field �(t) > 0 has an everywhere-positive wavefunction and is unique, hence
�min > 0. Ideally, therefore, the adiabatic theorem of quantum mechanics [23] guarantees
that the system will adiabatically follow the ground state if the annealing time τ is larger than
a certain characteristic time, τLZ ∝ �−2

min, beyond which Eres(τ ) decreases very fast (see, for
instance, [24], where a behaviour Eres(τ ) ∝ τ−2 is argued). (The earliest realization of a such
a phenomenon is just the textbook 2 × 2 Landau–Zener problem [25, 26], see section 3.) In
order for this argument to be of any real use, however, one should make sure that �min does
not get very small over the ensemble of instances one is considering, and, more generally,
when N → ∞. In practice, unfortunately, due to disorder and the associated Landau–Zener
tunnelling between broad barriers, such a minimum gap �min can be so tiny (even in systems
with a relatively small value of N) that the annealing time needed to adiabatically follow
the ground state is astronomically large. Later on, we will present a simple case, based on
a disordered Anderson model, where this happens (see section 3). As a general remark,
therefore, beware of QA–AQC results for cases where N is so small that, typically, the system
will have a relatively large �min: they are not really representative of the actual computational
power of QA–AQC on that problem.

1.4. Real-time versus imaginary-time Schrödinger evolution

In practical implementations of QA on an ordinary classical computer, the task of following
directly the time-dependent Schrödinger evolution in (2) is feasible only for toy models with
a sufficiently manageable Hilbert space [11, 27, 28]; for spin-1/2 problems, this restricts
N to the range N < 20 − 30. Actual optimization problems of practical interest usually
involve astronomically large Hilbert spaces, a fact that calls for alternative quantum Monte
Carlo (QMC) approaches. These QMC techniques, in turn, are usually based, in some way or
another, on an imaginary-time (IT) framework. For instance, it is much easier to implement,
stochastically, an imaginary-time Schrödinger evolution,

−h̄
d

dt
|�(t)〉 = H(t)|�(t)〉, (6)

rather than the standard real-time (RT) evolution in (2). Obviously, such an evolution is
non-unitary; hence the norm of |�(t)〉 is not conserved. It is still perfectly legitimate to ask
if, at the end of the annealing, the residual energy EIT

res(τ ), which is formally given by the
same expression (3), is better or worse than the corresponding one obtained in a standard
real-time evolution. We have recently addressed such a question in the context of simplified
toy problems [28], finding that, as far as annealing is concerned, IT is essentially equivalent
to RT, and, as a matter of fact, it can be quantitatively better [28]; we conjecture that, quite
generally, EIT

res(τ ) < Eres(τ ) for a given instance of the problem. This aspect will be directly
addressed in section 2.3.

1.5. Quantum Monte Carlo studies

A number of recent studies have applied strategies related to path-integral Monte Carlo (PIMC)
[29] or to diffusion quantum Monte Carlo (DMC) [30], to perform QA. PIMC is based on
an imaginary-time framework, but now an equilibrium one, rather than a time-dependent
one. Instead of solving (6), one simulates the equilibrium properties of the quantum partition
function Z = Tr e−βH(�) for a given fixed value of the quantum coupling �(t) appearing in
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Hkin and sufficiently small temperature T = 1/β, reducing the value of �(t) as a function
of the Monte Carlo ‘time’, in much the same way as temperature is reduced in standard
Metropolis Monte Carlo-simulated annealing. A certain success has been obtained in a
number of optimization problems, such as the folding of off-lattice protein models [31, 32],
the ground-state structure of classical Lennard–Jones clusters [9, 10, 33, 34], the random
Ising model [35, 36] and the random field Ising model ground-state problems [37] (see
section 4.2.1), the travelling salesman problem [38] (see section 4.2.2). On the other hand,
for the interesting case of Boolean satisfiability (SAT)—more precisely, a prototypical NP-
complete problem such as 3-SAT—a recent study of our group shows that PIMC annealing
performs worse than simple CA [39] (see section 4.2.3). The same conclusion might apply to
the one-dimensional (1D) Ising ANNNI model case [40].

In view of these results, it is fair to stress that it is a priori not obvious or guaranteed
that a QA approach should do better than, for instance, CA, on a given problem. Evidently,
the comparative performance of QA and CA depends in detail on the energy landscape of
the problem at hand, in particular on the nature and type of barriers separating the different
local minima, a problem about which very little is known in many practical interesting cases
[41]. That in turn depends crucially on the type and effectiveness of the kinetic energy chosen.
Unfortunately, there is still no reliable theory predicting the performance of a QA algorithm,
in particular correlating it with the energy landscape of the given optimization problem.

In order to gain understanding on these problems, we have moved, more recently, one
step back and concentrated attention on the simplest textbook problems where the energy
landscape is well under control: essentially, one-dimensional potentials, starting from a
double-well potential, the simplest form of barrier. On these well-controlled landscapes we
carried out a detailed and exhaustive comparison between quantum adiabatic Schrödinger
evolution, both in real and in imaginary time, and its classical deterministic counterpart, i.e.,
Fokker–Planck evolution [28]. This work will be illustrated in section 2.2. On the same double
well potential, we also studied [42] the performance of different stochastic approaches, both
classical Monte Carlo and path-integral Monte Carlo. Some of this work, which turns out to
be quite instructive, is briefly presented in section 4.3.

The scope of this review is to give an overview of some of the recent work in the field of
QA, from the authors’ perspective. No systematic attempt has been made in being exhaustive
in quoting references in the field, and we apologize for omissions: the reader can find a more
extensive source of references in the recent book on the subject by Das and Chakrabarti [43].
A review of the experimental work on the disordered Ising ferromagnet LiHo0.44Y0.56F4 is
given in [16].

The rest of this review is organized as follows: section 2 illustrates the deterministic
annealing approaches applied to toy problems, essentially the minimization of a function
of a continuous coordinate. Section 3 discusses the crucial role played by disorder and
the issue of Landau–Zener tunnelling in QA. Section 4 introduces the path-integral Monte
Carlo techniques, and illustrates some of the recent applications, notably on the random Ising
model, on the travelling salesman problem, and on Boolean satisfiability problems. Section 5
introduces the Green’s function Monte Carlo technique, and illustrates its recent application
to the same random Ising model instance previously studied by PIMC–QA as well as CA.
Section 6, finally, contains a brief summary of the main points, and some concluding remarks.

2. Deterministic approaches on toy problems

The deterministic annealing approaches (both classical and quantum) described in the present
section are directly related to the work of Kadowaki and Nishimori on Ising models on
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small clusters (N � 8) [11]. Further references along the same lines include [27], where a
Schrödinger evolution QA–AQC is applied to small (N � 20) random instances of a Boolean
satisfiability problem (exact cover), and recent work on the disordered Anderson model (with
N � 20 sites) and on the ±J Ising model on a 3 × 3 lattice [24].

Conceptually, one of the simplest optimization problems to illustrate is that of finding the
global minimum of an ordinary function of several continuum variables with many minima.
Suppose the classical Hamiltonian Hcl mentioned in the introduction is just a potential energy
V (x), (with x being a Cartesian vector of arbitrary dimension), of which we need to determine
the absolute minimum (xopt, Eopt = V (xopt)). Assume, generally, a situation in which a
steepest descent approach, i.e., the strategy of following the gradient of V , would lead to
trapping into one of the many local minima of V , and would thus not work. Classically, as
an obvious generalization of a steepest descent approach, one could imagine performing a
stochastic (Markov) dynamics in x-space according to a Langevin equation

ẋ = − 1

η(T )
�∇V (x) + ξ(t), (7)

where the strength of the noise term ξ is controlled by the squared noise correlations
ξi(t)ξj (t ′) = 2D(T )δij δ(t − t ′), with ξ̄ = 0. Both D(T ) and η(T )—with dimensions of
a diffusion constant and of a friction coefficient and related, respectively, to fluctuations and
dissipation in the system—are temperature-dependent quantities which can be chosen, for the
present optimization purpose, with a certain freedom. The only obvious constraint is in fact
that the correct thermodynamical averages will be recovered from the Langevin dynamics only
if η(T )D(T ) = kBT , an equality known as Einstein’s relation [44]. Physically, D(T ) should
be an increasing function of T, so as to lead to increasing random forces as T increases, with
D(T = 0) = 0, since noise is turned off at T = 0. Classical annealing can in principle be
performed through this Langevin dynamics, by slowly decreasing the temperature T (t) as a
function of time, from some initially large value T0 down to zero. Instead of working with
Langevin equation—a stochastic differential equation—one might equivalently address the
problem by studying the probability density P(x, t) of finding a particle at position x at time t.
The probability density is well known to obey a deterministic time-evolution equation given
by the Fokker–Planck (FP) equation [44]

∂

∂t
P (x, t) = 1

η(T )
div(P �∇V ) + D(T )∇2P. (8)

Here, the second term on the right-hand side represents the well-known diffusion term,
proportional to the diffusion coefficient D(T ), whereas the first term represents the effect
of the drift force −�∇V , inversely proportional to the friction coefficient η(T ) = kBT /D(T )

[44]. Annealing can now be performed by keeping the system for a long enough equilibration
time at a large temperature T0, and then gradually decreasing T to zero as a function of time,
T (t), in a given annealing time τ . We can model this by assuming T (t) = T0f (t/τ ), where
f (y) is some assigned monotonically decreasing function for y ∈ [0, 1], with f (y � 0) = 1
and f (1) = 0. In this manner the diffusion constant D in equation (8) becomes a time-
dependent quantity, Dt = D(T (t)). The FP equation should then be solved with an initial
condition given by the equilibrium Boltzmann distribution at temperature T (t = 0) = T0, i.e.,
P(x, t = 0) = e−V (x)/kBT0 . The final average potential energy after annealing, in excess of the
true minimum value, will then be simply given by

εres(τ ) =
∫

dx V (x)P (x, t = τ) − Eopt � 0, (9)

where Eopt is the actual absolute minimum of the potential V .
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In a completely analogous manner, we can conceive using Schrödinger’s equation to
perform a deterministic quantum annealing (QA) evolution of the system, by introducing
quantum fluctuations through a standard non-relativistic kinetic term Hkin(t) = −(h̄2/2mt)∇2,
with a fictitious time-dependent mass mt . We are therefore led to studying the time-dependent
Schrödinger problem

ξ
∂

∂t
ψ(x, t) = [−�(t)∇2 + V (x)]ψ(x, t), (10)

where ξ = ih̄ for a real-time (RT) evolution, while ξ = −h̄ for an imaginary-time (IT)
evolution. Here �(t) = h̄2/2mt will be our annealing parameter, playing the role that the
temperature T (t) had in classical annealing. Once again we may take �(t) varying from
some large value �0 at t � 0—corresponding to a small mass of the particle, hence to large
quantum fluctuations—down to �(t = τ) = 0, corresponding to a particle of infinite mass,
hence without quantum fluctuations. Again, we can model this with �(t) = �0f (t/τ ), where
f is a preassigned monotonically decreasing function. The initial condition here will be
ψ(x, t = 0) = ψ0(x), where ψ0(x) is the ground state of the system at t � 0, corresponding
to the large value �(t) = �0 and hence to large quantum fluctuations. The residual energy
after annealing will be similarly given by equation (9), where now, however, the probability
P(x, t = τ) should be interpreted, quantum mechanically, as

P(x, t) = |ψ(x, t)|2∫
dx′|ψ(x′, t)|2 .

In general, the residual energy will be different for RT or IT Schrödinger evolutions. We will
comment further on RT versus IT Schrödinger evolution later on.

In the remaining part of this section, we will present some of the results obtained along
the previous lines on simple one-dimensional potentials [28].

2.1. The harmonic potential: a warm-up exercise

Preliminary to any further treatment of a potential with barriers, and as a warm-up exercise
which will be useful later on, we start here with the simple case of a parabolic potential in
one dimension, V (x) = kx2/2, which has a trivial minimum in x = 0, with Eopt = 0, and no
barriers whatsoever.

Let us consider classical FP annealing first. As detailed in [28], it is a matter of simple
algebra to show that, for the harmonic potential, one can write a simple closed linear differential
equation [45] for the average potential energy εpot(t), which has the form

d

dt
εpot(t) = kDt

[
1 − 2

kBT (t)
εpot(t)

]
, (11)

the initial condition being simply given by the equipartition value εpot(t = 0) = kBT0/2.
As with every one-dimensional linear differential equation, equation (11) can be solved by
quadrature for any choice of T (t) and Dt = D(T (t)). Assuming the annealing schedule to be
parameterized by an exponent αT > 0, T (t) = T0(1 − t/τ )αT , τ being the annealing time, and
the diffusion constant D(T ) to behave as a power law of temperature, D(T ) = D0(T /T0)

αD

with αD � 0, we can easily extract from the analytical solution for εpot(t) the large-τ
asymptotic behaviour of the final residual energy εres(τ ) = εpot(t = τ). That turns out to be

εres(τ ) ≈ τ−�CA with �CA = αT

αT (αD − 1) + 1
. (12)

Trivial as it is, annealing proceeds here extremely fast, with a power-law exponent �CA that
can increase without bounds (for instance if αD = 1) upon increasing the exponent αT of the
annealing schedule.
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Consider now the Schrödinger evolution problem for this potential,

ξ
∂

∂t
ψ(x, t) =

[
−�(t)∇2 +

k

2
x2

]
ψ(x, t) ψ(x, t = 0) = ψ0(x), (13)

where ψ0(x) ∝ exp(−B0x
2/2) is the ground-state Gaussian wavefunction corresponding to

the initial value of the Laplacian coefficient �(t = 0) = �0, and ξ = ih̄ or ξ = −h̄ for
RT or IT evolution, respectively. As shown in [28], a Gaussian ansatz for ψ(x, t), of the
form ψ(x, t) ∝ exp(−Btx

2/2) with Real(Bt ) > 0, satisfies the time-dependent Schrödinger
equation as long as the inverse variance Bt of the Gaussian satisfies the following ordinary
nonlinear first-order differential equation:

−ξḂt = k − 2�(t)B2
t Bt=0 = B0 =

√
k

2�0
. (14)

Contrary to the classical case, there is no simple way of recasting the annealing problem in
terms of a closed linear differential equation for the average potential energy εpot(t). The final
residual energy εres(τ ) = εpot(t = τ) is still expressed in terms of Bτ (or better, of its real part
�(Bτ )),

εres(τ ) =
∫

dxV (x)|ψ(x, t = τ)|2∫
dx|ψ(x, t = τ)|2 = k

4�(Bτ )
, (15)

but the behaviour of Bt must be extracted from the study of the nonlinear equation (14). The
properties of the solutions of equation (14) are studied in detail in [28], where it is shown that

(i) εres(τ ) cannot decrease faster than 1/τ , for large τ , i.e., a power-law exponent εres(τ ) ≈
τ−�QA is bounded by �QA � 1.

(ii) Adopting a power-law annealing schedule �(t) = �0(1 − t/τ )α� , the exponent �QA for
the IT case is

�QA = α�

α� + 2
, (16)

increasing towards the upper bound 1 as α� is increased towards ∞. In particular, a linear
annealing schedule, α� = 1, leads to �QA = 1/3.

(iii) RT quantum annealing proceeds with exactly the same exponent �QA as IT quantum
annealing—although εRT

res (τ ) � εIT
res(τ ) in general—except that the limit α� = ∞ (abrupt

switch-off of the Laplacian coefficient) is singular in the RT case.

Note that, in the present continuum context, the residual energy cannot decrease faster 1/τ ,
contrary to the 1/τ 2 decrease observed in small-sized discrete problems (disordered Anderson
and random Ising models) [24].

Summarizing, we have learned that, for a single parabolic valley in configuration space,
both CA and QA proceed with power laws, but CA can be much more efficient than QA,
with an arbitrarily larger power-law exponent. We underline however that this is merely an
academic matter at this point, steepest descent being much more efficient than both CA and
QA in such a simple case. The power of annealing, in particular of QA, shows up only when
potentials with barriers are considered.
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2.2. The simplest barrier: a double-well potential

Consider, as a potential V (x) to be optimized, a slightly generalized double-well potential in
one dimension

Vasym(x) =




V0

(
x2 − a2

+

)2

a4
+

+ δx for x � 0

V0
(x2 − a2

−)2

a4−
+ δx for x < 0,

(17)

with, in general, a+ �= a−, both positive, V0, and δ real constants. (The discontinuity in the
second derivative at the origin is of no consequence in our discussion.) In the absence of
the linear term (δ = 0), the potential has two degenerate minima located at x− = −a− and
x+ = a+, separated by a barrier of height V0. When a small linear term δ > 0 is introduced, with
δa± � V0, the two degenerate minima are split by a quantity �V ≈ δ(a+ + a−), the minimum
at x ≈ −a− becoming slightly favoured. For reasons that will be clear in a moment, it is
useful to consider the situation, which we will refer to as ‘asymmetric double well’, in which
the two wells possess definitely distinct curvatures at the minimum (i.e., their widths differ
too), realized by taking a+ �= a−. (To lowest order in δ, we have V ′′(x = x±) = 8V0/a

2
±.) In

particular, we shall examine the case in which the metastable ‘valley’ at x+ is ‘wider’ than the
absolute minimum at x−, a situation realized by choosing a+ > a−. This curvature asymmetry
will have a rather important effect on the quantum evolution, since, as we shall see, for small
and intermediate values of the mass of the particle, the wavefunction of the system will be
predominantly located on the metastable minimum. Obviously, if we set a+ = a− = a, and
δ = 0 we recover the standard double-well potential. QA work on the latter problem, via an
approximate solution of the imaginary-time Schrödinger problem with an Gaussian ansatz for
the wavefunction, is discussed in [9].

We now present the results obtained by the annealing schemes introduced in section (2).
The Fokker–Planck and the Schrödinger equation (both in RT and in IT) can be integrated
numerically using a fourth-order adaptive Runge–Kutta method [8], after discretizing the x
variable in a sufficiently fine real-space grid [28]. For the FP classical annealing, the results
shown are obtained with a linear temperature schedule, T (t) = T0(1 − t/τ ), and a diffusion
coefficient simply proportional to T (t),Dt = D0(1 − t/τ ). (Consequently, the friction
coefficient is kept constant in t, ηt = kBT (t)/Dt = kBT0/D0.) Similarly, for the Schrödinger
quantum annealing we show results obtained with a coefficient of the Laplacian �(t) vanishing
linearly in a time τ , �(t) = �0(1 − t/τ ).

Figure 1 shows the results obtained for the final annealed probability distribution
P(x, t = τ) at different values of τ , for both the Fokker–Planck (FP-CA, panel (a)) and
the Schrödinger imaginary-time case (IT-QA, panel (b)), for an ‘asymmetric’ double-well
potential Vasym(x), with V0 = 1 (our unit of energy), a+ = 1.25, a− = 0.75, δ = 0.1.
Figure 1(c) summarizes the results obtained for the residual energy εres(τ ) in equation (9).

We note immediately that QA wins over FP-CA, giving a better annealing for large enough
value of τ . The RT-QA, which behaves as its IT counterpart for a symmetric double-well
(a+ = a−, see [28]), shows a slightly different behaviour from IT-QA in the asymmetric case
(see below for comments). We discuss first the FP-CA data (panel (a) and (c) of figure 1).
Starting from an initially broad Boltzmann distribution at a high T = T0 = V0, P (x, t = 0)

(solid line), the system quickly sharpens the distribution P(x, t) into two well-defined and
quite narrow peaks located around the two minima x± of the potential. This agrees very well
with what CA does for a harmonic potential [28]. If we denote by p± the integral of each of the
two narrow peaks, with p− + p+ = 1, it is clear that the problem has effectively been reduced
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Figure 1. (a, b): the annealed final probability distribution P(x, t = τ) at different values of
the annealing time τ , for both the Fokker–Planck classical annealing (FP-CA, panel (a)), and the
imaginary-time Schrödinger quantum annealing (IT-QA, panel (b)). (c): final residual energy
εres(τ ) versus annealing time τ for quantum annealing in real-time (RT-QA) and imaginary-time
(IT-QA), compared to the Fokker–Planck classical annealing (FP-CA). The solid line in (c) is a fit
of the FP-CA data. Here the double-well potential (dashed line in (a, b), inset of (c)) is given by
equation (17) with a+ = 1.25, a− = 0.75, V0 = 1, δ = 0.1.

to a discrete two-level problem. The time evolution of p±, therefore, obeys a discrete master
equation which involves the thermal promotion of particles over the barrier, V0, of the form
presented and discussed by Huse and Fisher in [46]. They show that, apart from logarithmic
corrections, the leading behaviour of the residual energy is of the form εres ∼ τ−�V /B , with
the power-law exponent controlled by the ratio �V /B between the energy splitting of the two
minima �V and the barrier B = V0 − V (x+). As shown in figure 1(c) (solid line through
solid circle), the power-law asymptotic behaviour anticipated by Huse and Fisher fits nicely
our FP-CA residual energy data (solid circles), as long as the logarithmic corrections are
accounted for in the fitting procedure [28]. Obviously, we can make the exponent as small as
we wish by reducing the linear term coefficient δ, and hence the ratio �V /B, leading to an
exceedingly slow classical annealing.

The behaviour of the QA evolution is remarkably different. Observe, as a first point, that
the final annealed wavefunctions narrow only slowly around the minimum of the potential,
although the residual energy asymptotics of QA are clearly winning over FP-CA. The
asymptotic behaviour of the QA residual energy is εres(τ ) ∝ τ−1/3, indicated by the dashed
line in figure 1(c). This rather strange exponent was anticipated by equation (16) for the
Schrödinger annealing with a linear schedule �(t) within a harmonic potential (the lower
minimum valley). Going back to figure 1(b), the initial wavefunction squared |ψ(x, t = 0)|2
corresponds to a quite small mass (a large �0 = 0.5), and is broad and delocalized over both
minima (solid line). As we start annealing, and if the annealing time τ is relatively short—
that is, if τ < τc, with a characteristic time τc which depends on which kind of annealing,
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Figure 2. (a, b): instantaneous eigenvalues (a) and ground-state wavefunctions (b) of the
Schrödinger problem Hψ = Eψ for different values of �, for the potential in equation (17)
with a+ = 1.25, a− = 0.75, V + 0 = 1, δ = 0.1. Note the clear Landau–Zener avoided crossing
in (a), indicated by the arrow and magnified in the inset. (c)–(e): instantaneous Fokker–Planck
eigenvalues (c) as a function of temperature T, and the corresponding eigenstates for T = 1 (d),
and T = 0.1 (e), for the same potential used in (a, b).

RT or IT, we perform—the final wavefunction becomes mostly concentrated on the wrong
minimum, roughly corresponding to the ground state with a still relatively large �1 < �0 (see
also figure 2 and accompanying discussion). The larger width of the wrong valley is crucial
in causing that, giving a smaller quantum kinetic energy contribution, so that tunnelling to the
other (deeper) minimum does not immediately occur, and the system is trapped in the wrong
but broader valley. By increasing τ , there is a crossover: the system finally recognizes the
presence of the other minimum, and effectively tunnels into it, with a residual energy that, as
previously mentioned, decays asymptotically as εres(τ ) ∝ τ−1/3 (dashed line in figure 1(c)).
There is a characteristic annealing time τc—different in the two Scrödinger cases, RT and
IT—above which tunnelling occurs, and this shows up as the clear crossover in the residual
energy behaviour of both IT and RT, shown in figure 1(c).

These findings can be rationalized by looking at the instantaneous (adiabatic) eigenvalues
and eigenstates of the associated time-independent Schrödinger problem, which we show in
figures 2(a) and (b). Looking at the instantaneous eigenvalues shown in figure 2(a) we note a
clear avoided crossing occurring at � = �LZ ≈ 0.038, corresponding to a resonance condition
between the states in the two different valleys of the potential. For � > �LZ the ground-state
wavefunction is predominantly concentrated in the wider but metastable valley, while for
� < �LZ it is mostly concentrated on the deeper and narrower global minimum valley. In
the full time-dependent RT evolution, transfer to the lower valley is a Landau–Zener problem
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[25, 26]: the characteristic time τc for the tunnelling event is given by τLZ = h̄α�0/2π�2,
where α is the relative slope of the two crossing branches as a function of �, 2� is the gap
at the avoided crossing point and �0 is the initial value of the annealing parameter. (For the
case shown in figure 2, we have 2� = 0.0062, α = 2.3, hence τLZ ≈ 18 980, see rightmost
arrow in figure 1(c).) The Landau–Zener probability of jumping, during the evolution, from
the ground state onto the ‘wrong’ (excited) state upon fast approaching of the avoided level
crossing is Pex = e−τ/τLZ , so that adiabaticity applies only if the annealing is slow enough,
τ > τLZ. Note that the gap 2�, and hence the probability of following adiabatically the
ground state, can be made arbitrarily small by increasing the asymmetry of the two well, i.e.,
by making a+ � a−. The IT characteristic time is smaller, in the present case, than the RT
one. This point is discussed in some detail in [28]. In a nutshell, the reason for this is the
following. After the system has jumped into the excited state, which occurs with a probability
Pex = e−τ/τLZ , the residual IT evolution will filter out the excited state; this relaxation towards
the ground state is controlled by the annealing rate as well as by the average gap seen during
the residual evolution. Numerically, the characteristic time τc seen during the IT evolution
is of the order of h̄/(2�), see leftmost arrow in figure 1(c), rather than being proportional to
1/�2 as τLZ would imply.

Obviously, instantaneous eigenvalues/eigenvectors can be studied for the Fokker–Planck
equation as well; their properties, however, are remarkably different from the Landau–Zener
scenario just described for the Schrödinger case. Figure 2(c) shows the first four low-lying
eigenvalues of the FP equation as a function of T, while figures 2(d ) and (e) show the
corresponding eigenstates for two values of the temperature, T/V0 = 1 and T/V0 = 0.1,
for the same asymmetric potential used in figures (1) and (2). The lowest eigenvalue of
the FP operator is identically 0, and the corresponding eigenvector [44] is the Boltzmann
distribution e−V (x)/kBT , with roughly symmetric maxima on the two valleys. The first excited
state corresponds to a function peaked on the two valleys but with a node at the origin, and is
separated from the ground state by an exponentially small Arrhenius-like gap e−B/kBT . Higher
excited states are separated by a very large gap, so that, effectively, only the two lowest lying
states dominate the dynamics at small temperature. The reduction of a continuum double-well
FP classical dynamics onto a discrete effective two-level system, previously noted, is quite
evident from this form of the spectrum. In contrast, the true quantum case does not allow
a discrete two-level system description to hold for small enough �. Indeed, when � < �LZ

the tower of oscillator states within the valley at x− is always very close and collapsing in
energy onto the actual ground state, and the quantum annealing evolution reduces effectively
to a particle in a single harmonic well. This explains the rather large width of the final
distributions P(x, τ ) observed in the quantum case.

Summarizing, we have found that QA and CA proceed in a remarkably different way. CA
is sensitive to the height of the barrier, more precisely to the ratio �V /B between the energy
offset �V of the two minima, and the barrier height B. In contrast, QA crucially depends
on the tunnelling probability between the two valleys, which is reflected in a Landau–Zener
(avoided crossing) gap: a wide tunnelling barrier is obviously bad for QA. Finally, we noted
that RT and IT proceed with different characteristic times: we discuss this issue a bit more in
the following section.

2.3. Real- versus imaginary-time Schrödinger evolution

A Schrödinger dynamics in imaginary time (IT) is clearly much more convenient than that
in real time (RT) for QA simulations on current classical computers: but does it make a
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difference in the final results? The answer to this question is, we believe: no, it does not make
a difference, in essence, although IT does give quantitatively better results.

To qualify this statement, let us denote by |�(ξ)(t)〉 the solution of the Scrödinger equation

ξ
d

dt
|�(ξ)(t)〉 = [Hcl + Hkin(t)]|�(ξ)(t)〉 |�(ξ)(t0)〉 = |�0〉, (18)

where we assume that |�0〉 is the ground state of the initial Hamiltonian at time t0,Hcl +
Hkin(t0), while ξ = ih̄ for RT or ξ = −h̄ for IT. By definition, the final residual energy after
annealing up to time tf = t0 + τ , where the kinetic energy is finally turned off, is given by

ε(ξ)
res (τ ) = 〈�(ξ)(t0 + τ)|Hcl|�(ξ)(t0 + τ)〉

〈�(ξ)(t0 + τ)|�(ξ)(t0 + τ)〉 − Eopt. (19)

We conjecture that the residual energies for the two alternative ways of doing a Schrödinger
evolution verify the following: (i) the IT residual energy is not larger than the RT one, that is

ε(IT)
res (τ ) � ε(RT)

res (τ ), (20)

and (ii) in many problems, the leading asymptotic behaviour, for τ → ∞, might be identical
for ε(IT)

res (τ ) and ε(RT)
res (τ ).

Expectation (i) seems very reasonable, and is inspired by the time-independent case,
where it is well known that the IT Schrödinger dynamics tends to ‘filter the ground state’
out of the initial trial wavefunction, as long as the gap between the ground state and the first
excited state is non-zero. However, we have here a time-dependent situation, and the result is
a priori not guaranteed. We do not have a proof of this statement, but we have verified it in
all the cases where an explicit integration of the Schrödinger equation was possible (see, for
instance, the results of the previous section). Needless to say, we have no proof of (ii) either,
but, again, it never failed in all our tests.

The simplest time-dependent problem where one can test our conjectures is the discrete
two-level system (TLS) problem. Here, in terms of Pauli matrices, Hcl = �σz, while
Hkin(t) = −�(t)σ x , with �(t) = −vt . The full H(t) is therefore

H(t) = �σz − �(t)σ x. (21)

The annealing interpretation is very simple: the classical optimal state is |↓〉, with energy
Eopt = −�, separated from the excited state |↑〉 by a gap 2�. The kinetic term induces
transitions between the two classical states. Starting from the ground state of H(t0) at
time t0 = −τ we let the system evolve up to time tf = t0 + τ = 0, at which point the
Hamiltonian is entirely classical, H(tf = 0) = Hcl = �σz. The probability of missing
the instantaneous final ground-state |↓〉, ending up instead with the excited-state |↑〉, is
Pex(0) = |〈↑|�(ξ)(0)〉|2/〈�(ξ)(0)|�(ξ)(0)〉. In principle, Pex depends, for given �, both on
the initial �(t0) = �0 = vτ and on the annealing time τ . The really important parameter,
however, turns out to be the ratio v between these two quantities, which determines the
‘velocity of annealing’: taking τ → ∞ (i.e., t0 → −∞), and �0 → ∞ with �(t) = −vt for
every t, the problem can be solved analytically (in terms of parabolic cylinder functions, see
for instance [11] for the RT case) for both RT and IT. The probability Pex(0) of ending into the
excited state can be expressed in terms of the variable γ = �2/4v. The explicit expressions,
in terms of Gamma functions, are

Pex(0) = |R + 1|2
2(1 + |R|2) with R = eiφ0

1√
γ

Γ(1 + z)

Γ(1/2 + z)
, (22)

where φ0 = 3π/4 and z = iγ for RT, while φ0 = π and z = γ for IT. A plot of Pex for both
RT and IT is shown in figure 3(a) as a function of γ = �2/4v. Note that (i) the IT result
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Figure 3. (a) The probability Pex(0) of ending up into the excited state, given by equation (22),
for the discrete two-level system problem in equation (21), for both imaginary-time (IT, dashed
line) and real-time (RT, solid line) Schrödinger annealing. The large γ behaviour of Pex(0) is, in
both cases, given by Pex(0) ≈ 1/(256γ 2). (b) Comparison between the RT (solid lines) and the
IT (dashed lines) evolution of a Landau–Zener problem, equation (23), for several values of the
tunnelling gap 2� (the values of � shown are � = 0.4, 0.2, 0.1, 10−2, 10−3, 10−4, 10−5, 10−6,
while v = 1). The inset shows the two instantaneous eigenvalues of the problem, E±(t), as a
function of t.

for Pex (dashed line) is always below the RT result, (ii) the difference between the two curves
is only quantitative: one can verify analytically that the leading behaviour for large γ is the
same in both cases, i.e., Pex ≈ 1/(256γ 2). Similar results are obtained by direct numerical
integration of the Schrödinger equation for finite �0 and τ , and with other forms of �(t).

With the same toy model, we can illustrate another point raised in the previous section:
what happens to the IT evolution after a Landau–Zener avoided crossing gap is encountered?
The Hamiltonian we consider is essentially that of equation (21), simply rotated in spin space,

H(t) = −vtσ z − �σx. (23)

In the absence of the tunnelling amplitude �, the two energy levels would cross at t = 0, while
for � > 0 the two instantaneous eigenvalues are simply E±(t) = ±

√
(vt)2 + �2 (see inset

in figure 3(b)). Starting with the system in the ground state at t = −∞, we can monitor the
probability of jumping onto the excited state at any time t, which we plot in figure 3(b) for both
the RT and the IT evolution and for several values of � (taking v = 1). The RT data provide
an illustration of the well-known Landau–Zener result: after a (relatively short) tunnelling
time, and possibly a few oscillations, the probability of getting onto the excited state saturates
to a value given by Pex(t = ∞) = e−π�2/h̄v . As for the IT data, the initial (tunnelling) part
and the subsequent plateau of the curves are similar to the RT case: the plateau value attained,
call it P ∗

ex, is indeed very close to the RT saturation value (in fact, asymptotically the same
for � → 0); after that, the IT evolutions start to filter out the ground-state component—
initially present in the state with a small amplitude 1 − P ∗

ex—through the usual mechanism of
suppression of excited states, leading to Pex(t) which is nicely fit by the curve

Pex(t) = P ∗
ex exp

(−2
∫ t

0 dt ′[E+(t
′) − E−(t ′)]

)
(1 − P ∗

ex) + P ∗
ex exp

(−2
∫ t

0 dt ′[E+(t ′) − E−(t ′)]
) , (24)

which asymptotically goes to zero as t → ∞. This rather trivial effect of filtering, if on one
hand explains the discrepancy between the IT and the RT evolution observed in the asymmetric
double-well case of the previous section, is, on the other hand, of no harm at all: in contrast,
it provides a quantitative improvement of IT over RT.
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Figure 4. Parabolic washboard potential resulting in a logarithmically slow classical annealing.
The minima are regularly located at positions xi = ia, and the dashed line shows the parabolic
envelope potential.

In summary, the essential equivalence of IT and RT Schrödinger annealing (with,
moreover, a quantitative improvement of IT over RT) justifies practical implementations
of quantum annealing based on imaginary-time quantum Monte Carlo schemes.

2.4. Other simple one-dimensional potentials with many minima

Moving on to multi-minima problems, we would like to mention one interesting one-
dimensional potential (see [28] for details) which shows a remarkably different behaviour
of CA and QA. The problem was proposed and solved, for CA, by Shinomoto and Kabashima
in [45, 47], and consists in a parabolically shaped washboard potential, sketched in figure 4.
This example will display a logarithmically slow classical annealing, showing that CA may
run into trouble even in simple models with no complexity whatsoever, whereas quantum
mechanics can do much better in this case. The problem consists in a wiggly one-dimensional
potential with barriers of individual height ≈B separating different local minima, regularly
located a distance a apart one from each other, i.e., at positions xi = ai, i = 0,±1,±2, . . . .

The ith local minimum is at energy εi = ka2i2/2, so that the resulting envelope is parabolic.
By writing the appropriate master equation governing the probability Pi(t) that the particle
is found in the ith valley at time t, and taking the continuum limit a → 0, Shinomoto and
Kabashima [45, 47] showed that the equation governing the evolution of P(x, t) turns out to
be a Fokker–Planck (FP) equation, equation (8), with an effective diffusion constant of the
form

Deff(T ) = γ a2 e−B/kBT , (25)

η(T ) = kBT /Deff(T ), and an effective drift potential V (x) = kx2/2 given by the macroscopic
parabolic envelope potential. This exponentially activated Deff(T ) makes the annealing
behaviour of the P(x, t) exceedingly slow. In fact, the surprising result of this exercise
[45, 47] is that the optimal annealing schedule T (t) is logarithmic and the residual energy
converges to 0 at best as εres(t) ∼ log(t)−1. The physical reason behind such a slow CA
annealing is that the relaxation time trelax = kBT /(2γ ka2) eB/kBT for the system to thermalize
at any temperature T diverges exponentially at low T. As a result, the system will never be able
to follow the decreasing T till the end of the annealing, by maintaining roughly the equilibrium
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value εpot = kBT /2. Indeed, if we assume for instance T (t) = T0(1 − t/τ ), the relaxation
of the systems will cease to be effective—i.e., the system will fall out of equilibrium—at a
time t∗, and temperature T ∗ = T (t∗), at which trelax ≈ τ , i.e., when kBT ∗ ≈ B/ log γ τ . The
residual energy at this point cannot be smaller than the equipartition value kBT ∗/2, hence
εres ≈ B/ log γ τ as well. This freezing and falling out of equilibrium for classical systems
with barriers seem to provide an ubiquitous source of logarithms in classical annealing [46].

The quantum mechanical approach to the same problem has been illustrated in [28].
In essence, starting from a tight-binding description in which the on-site energies εi are
supplemented by a time-dependent nearest-neighbour hopping term which contains the inverse
mass � = h̄2/2m in the typical semi-classical (WKB) form ∼e−√

Vh/� (Vh being an energy
related to the details of the barrier), one can take, once again, the continuum limit a → 0.
The dynamics for the ψ(x, t) reduces, in strict analogy with the classical case, to an effective
Schrödinger equation for a particle moving in the parabolic envelop potential V (x) = kx2/2,
with an effective Laplacian coefficient �eff(t) ∝ e−√

Vh/�(t), which plays here the role that
the effective diffusion constant in equation (25) played in the FP case. Contrary to the
classical case, however, where an exponentially activated behaviour of the diffusion constant
Deff was strongly detrimental to the annealing (turning a power law into a logarithm), here
the exponential WKB-like behaviour of �eff does no harm at all: surprisingly, it improves
the annealing. Indeed, as shown in [28], the power-law exponent �QA determining the decrease
of the residual energy for a particle in a harmonic well, εres(τ ) ∝ τ−�QA , increases as one
switches off the Laplacian coefficient more and more rapidly, tending to the value �QA → 1
for an infinitely fast switching off.

We believe that one of the important points that makes QA so different from CA in this
case is that the spectrum of the instantaneous eigenvalues of the quantum problem does not
show any dangerous Landau–Zener avoided crossing, and, correspondingly, the ground-state
wavefunction is always more peaked in the central valley (the minimum at xi = 0) than
elsewhere. As in the two-level case, a disorder in the width of the different valleys would
drastically change this result, and likely ruin the power-law behaviour of QA.

3. Role of disorder and Landau–Zener tunnelling

Despite their disarming simplicity, the cases illustrated above turn out to be extremely
informative in qualifying the profound difference of QA from CA, and their surprising
consequences. Of course the cases studied, although instructive, do not possess the real
ingredient which makes annealing, especially QA, difficult, i.e., some form of disorder in the
distribution of the minima.

As an explicit demonstration of the effect of disorder in a very simple framework, consider
the quantum walk of a particle in a given lattice, say cubic in D dimensions, of N sites. If
an on-site energy εi is associated with each site of the lattice, the Hamiltonian describing the
quantum walk is just a disordered Anderson model

H(t) =
∑

i

εi n̂i − �(t)
∑
〈i,j〉

[
c
†
j ci + H.c.

]
, (26)

where Hcl = ∑
i εi n̂i represents the disordered on-site energy term, while the hopping term,

proportional to −�(t), provides the quantum kinetic term. The problem is to search for the
lowest εi in the lattice—with the on-site energy εi randomly distributed in a given energy
interval, say [0, 1]—by adiabatic evolution of a single-electron wavefunction from a very
large �0 = �(t � 0) (when the wavefunction is extended over all sites) down to �(τ) = 0.
Recent work on this problem has been reported in [24], where small instances (N = 20 sites)
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Figure 5. Instantaneous low-lying eigenvalues of a three-dimensional disordered Anderson model,
on a lattice of size 10 × 10 × 10, as a function of the hopping integral �. Note the Landau–Zener
avoided crossings, particularly the one occurring at smaller �, which can have a tremendously
small gap 2�. The inset shows a schematic of the Landau–Zener process.

of the problem are shown to be annealed rather fast by QA–AQC, with Eres(τ ) ∼ 1/τ 2. This
disordered Anderson model is clearly related to the problem of searching for an item in an
unsorted database of N entries, Grover’s problem [17, 48], one of the cases where QC is
known to provide a speed-up, from the classical exhaustive search, O(N), to O(

√
N). Indeed,

the spatial search Grover’s problem associated with a structured database can be formulated
in terms of equation (26) with εī = 0 while εj �=ī = 1, where ī is the desired entry of the
lattice (database), and 〈ij 〉 denote neighbouring lattice sites (database entries) connected by
the hopping in the given lattice structure; in this case, for instance, a quadratic speed-up
has been demonstrated for D � 4 [49]. However, the disorder associated with the on-site
energies εi , in a more general circumstance, makes the spectrum of the Hamiltonian in (26)
much more complicated than in the spatial search Grover’s case. Obviously, the properties
of the instantaneous spectrum of the Hamiltonian (26) depend on the dimensionality D of the
lattice, and on the nearest-neighbour kinetic energy terms included (the so-called adjacency
matrix of the quantum walker, in other words, on the topography of the landscape of the
problem, specifying who is neighbour of whom). On quite general grounds, Anderson’s
localization [50, 51] would predict that instantaneous wavefunctions of H(t) are localized, for
a genuinely disordered potential and for large enough mass (i.e., small enough �(t) and hence
kinetic energy bandwidth) in any D > 2 (this localization occurs for all values of the mass
in D = 1, 2). Therefore, quantum annealing should always, via a cascade of Landau–Zener
events [35], end up into some localized state which has, a priori, nothing to do with the actual
potential minimum, i.e., the smallest εi . Figure 5 shows the instantaneous eigenvalues of a
disordered three-dimensional Anderson model, on a lattice of size 10 × 10 × 10, as a function
of the nearest-neighbour hopping integral �. In the process of reducing �, the ground state
encounters several ‘identity crisis’ associated with tunnelling from one region of the lattice
to another. Some of these tunnelling amplitudes can be tremendously small, so that one has
to wait for an astronomically large Landau–Zener characteristic time τLZ (see section (2.2))
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Figure 6. (Right) Instantaneous low-lying eigenvalues of a one-dimensional disordered Anderson
model, on a lattice of size N = 100, as a function of the hopping integral �. Note the Landau–
Zener avoided crossings, particularly the one occurring at smaller �, which has a very small gap
2�. (Left) The residual energy obtained by a Schrödinger imaginary-time evolution versus the
annealing time τ . The inset shows the particular realization of the disordered on-site energies εi ,
with the two arrows signalling the lowest minimum, at i = 60 and the competing one at i = 72.

in order for the probability of ‘adiabatically following the ground state’ to be non-negligible.
An even more concrete illustration of this problem is obtained for the D = 1 case shown in
figure 6. Here, for the realization of the disorder shown in the left inset, there are two
competing minima: the absolute minimum at i = 60, and a higher one, very close in energy,
at i = 72. For reasons that have to do with the quantum kinetic energy—the valley around
i = 72 being broader—the energy of the state localized around i = 72 is the lowest one, down
to very small values of � > �LZ ≈ 0.02. At such a value of �, a Landau–Zener crossing with
an exceedingly small gap occurs, see right inset of figure 6. The system is, however, unable to
follow the instantaneous ground state, for all practical purposes, and the final annealed energy
of an IT–QA Schrödinger evolution remains trapped at εi=72: no Eres ∼ 1/τ 2 behaviour [24]
is seen until astronomically large τ values are reached.

Moving to slightly more complicated models, let us consider the crucial role that disorder
plays in the one-dimensional (D = 1) disordered Ising ferromagnet:

H = −
∑

i

Jiσ
z
i σ z

j − �
∑

i

σ x
i , (27)

where Ji � 0 are non-negative random variables in the interval [0, 1], and � is the transverse
field inducing quantum fluctuations. Obviously, the ground state of the classical model at
� = 0 is the ferromagnetic state with all spins aligned up (or down). So, once again we are
considering a trivial minimization problem, without any frustration at all (frustration requires
competition between different couplings, and is therefore absent in D = 1 nearest-neighbour
models). However, even at � = 0 there are important low-energy defects—domain walls
between up and down ferromagnetic regions—which are typically pinned at the bonds where
the couplings Jis are the smallest. (For a finite system with periodic boundary conditions,
domain walls appear in pairs, and separate sections of the system with alternating ↑ and ↓
ferromagnetic ground states.) Given two domain walls, pinned at weak Ji < ε � 1 bonds,
typically at a distance L ∼ ε−1 � 1 apart, healing the system via single spin flip moves
requires flipping L spins, which can be a formidable barrier to tunnel through (or to go over,
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thermally). The situation is even worse at the critical point [19], ln �c = ln J = ∫ 1
0 dJ ln J ,

where it is known that the typical gap � between the ground state and the first relevant excited
state is exponentially small, in the lattice size N [52],

[�]typ ∼ e−const
√

N . (28)

The critical point �c—separating the gapped large � quantum paramagnetic phase with all
spins aligned along x, from the gapless low � classically disordered phase—is therefore a
crucial source of small Landau–Zener gaps. We expect that, due to such exponentially small
gaps, the typical characteristic Landau–Zener time τLZ ∝ �−2

min beyond which the system will
be able to adiabatically follow the ground state will be exponentially large in N, resulting
in a residual energy per spin εres(τ ) = Eres(τ )/N which, on average, will decrease only
logarithmically as a function of the annealing time τ ,

[εres(τ )]av ∝ (log τ)−ζ , (29)

for N → ∞. Work on this problem is currently in progress [53]. In conclusion, the system
will have a very slow annealing while showing, at the same time, no complexity whatsoever:
simple disorder is enough to yield slow annealing logarithmically.

4. Path-integral Monte Carlo quantum annealing

In order to move from toy problems with a manageable Hilbert space to real optimization
problems, stochastic approaches are mandatory. As discussed in the introduction and in
section 2.3, imaginary-time stochastic approaches are perfectly suitable to the goal: there is
no gain in doing, on a classical computer, a Schrödinger evolution in real time [28].

A very simple quantum Monte Carlo approach, suitable to the proposed goal, is the PIMC
approach. PIMC work in the QA context has been pioneered by Berne and collaborators,
who have combined clever thermal and quantum annealing schemes within a path-integral
framework, and applied these strategies to finding the minimal energy configurations of
protein models on the continuum (with up to N = 46 monomers) [31, 32], and the minimal
energy configurations of Lennard-Jones clusters of up to N = 100 atoms [33]. More recent
PIMC-based QA work on the Lennard-Jones problem is reported in [34].

We start by briefly sketching the idea behind this approach with two introductory examples:
the Ising case, as representative of discrete optimization problems, and the particle in a
potential, as representative of continuum problems.

4.1. Path-integral Monte Carlo: introduction

The first, crucial, observation is that PIMC is intended to simulate the equilibrium behaviour of
a system at finite temperature T. Both these features are potential limitations of the method. To
clarify this point, consider, for instance, the Edward–Anderson Ising glass in a transverse field:
H = Hcl +Hkin = −∑

〈ij〉 Jijσ
z
i σ z

j −�(t)
∑

i σ
x
i . Strictly speaking, in the quantum annealing

context, this is a time-dependent Hamiltonian, of which we would like to follow the low-lying
states (ideally, the ground state) as a function of time, by turning off the transverse field �(t).
PIMC allows you to simulate the thermodynamics (at fixed strictly positive temperature T )
for a fixed value of �(t), by an approximate sampling of the quantum partition function

Z(T , �) = Tr e−β(Hcl+Hkin) =
∑
s1

〈s1| e−β(Hcl+Hkin)|s1〉, (30)

where s1 denotes a generic configuration of all the N spins. The idea behind the path integral
is to reduce equation (30) to a classical partition function which is then sampled in the usual
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way using, for instance, a Metropolis Monte Carlo. In order to do that, one needs to split
the exponential of the Hamiltonian, appearing in equation (30), into products of exponentials.
This is allowed by the Trotter theorem, stating that

e−β(Hcl+Hkin) = lim
P→∞

(
e− β

P
Hcl e− β

P
Hkin

)P
. (31)

Using this relationship, and inserting identities between the various exponentials, we get

Z(T , �) = lim
P→∞

∑
s1...sP

exp

(
− β

P

P∑
k=1

Hcl(s
k)

)
〈s1| e− β

P
Hkin |s2〉 · · · 〈sP | e− β

P
Hkin |s1〉. (32)

The various configurations sk (k = 1 · · · P) are often referred to as Trotter replicas of the
original configuration s1. The next thing one needs to do is to calculate explicitly the relevant
exponential of the kinetic term, 〈sk| e−Hkin/PT |sk+1〉, between two generic configurations. This
is sometimes very easy to do—like in the Ising transverse field case, or in the Laplacian case
(see below)—but can also be very difficult, for other choices of Hkin (like in the travelling
salesman case, see section (4.2.2)). In the Ising case, the problem factorizes into N independent
sites, each of which involves a simple Pauli matrix expectation value, yielding

〈sk| e− β

P
Hkin |sk+1〉 = CN exp

(
β

P
J⊥ ∑

i

sk
i s

k+1
i

)
, (33)

where the transverse coupling J⊥ is given by

J⊥ = − P

2β
ln(tanh β�/P ) > 0 (34)

(the constant C is not relevant for our discussion). This kinetic term has a very transparent
interpretation: J⊥ gives a ferromagnetic Ising-like coupling between nearest-neighbour
(k and k+1) Trotter replicas of the same spin. In order to implement the problems numerically,
a finite number of Trotter replicas P is mandatory. This leads to an approximation, the error
of which is proportional to the square of the Trotter break-up time, O((β/P )2) [54]. (Better
Trotter break-ups, for given finite values of P, can lead to smaller errors, see section (4.3), but
we will concentrate here on the basic form proposed above.) For the full partition function we
thus finally get, in the Ising case

Z(T , �) ≈ CNP
∑
s1

. . .
∑
sP

e− β

P
SD+1 (35)

SD+1 = −
P∑

k=1


∑

〈ij〉
Jij s

k
i s

k
j + J⊥ ∑

i

sk
i s

k+1
i


 , (36)

which represents the partition function of a classical (D + 1)-dimensional anisotropic Ising
system at temperature P/β = PT . The system has couplings Jij along the original
D-dimensional lattice bonds (same for all Trotter replicas), and J⊥ (same for all sites i)
along the extra Trotter dimension where the system has a finite length P.

Similar expressions hold, for instance, for the problem of a particle in a potential V (x),
where Hcl = V (x),Hkin = −�∇2, and sums over configurations

∑
sk transform into integrals

over the variables xk . Similarly, the kinetic term contribution

〈xk| e−Hkin/PT |xk+1〉 =
(

K⊥

2πPT

)D/2

e− 1
PT

K⊥
2 (xk−xk+1)2

, (37)

where D is the dimension of the x-space and K⊥ = (PT )2/(2�) admits a perfectly transparent
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interpretation: the transverse coupling K⊥ between different Trotter replicas has the form of
a spring coupling neighbouring configurations xk and xk+1.

In all cases, QA, in the present context, consists in externally controlling, during the
PIMC dynamics, the value of the transverse field �—leaving T untouched—in much the
same way as one externally controls T in classical simulated annealing [6]. This approach,
which we will refer to as PIMC-QA, does not lead, therefore, to the simulation of a true
quantum mechanical annealing dynamics, of the type implied by equation (2), but only to
a MC annealing dynamics [42]. A clever mixing of thermal (reduction of T ) and quantum
annealing (reduction of �)—possibly combined with decimation techniques on the number
of Trotter replicas P as � is reduced—has been successfully applied in [31–33] to various
continuum optimization problems (protein folding models and Lennard-Jones clusters). In the
following, however, we will stick to the simple PIMC-QA scheme outlined above, whereby T
is untouched during a QA simulation and the number of Trotter replicas P is also kept fixed, in
order to more clearly discriminate possibly genuine quantum effects from thermal ones. We
now move on to describe some of the results obtained so far with this technique on discrete
optimization problems.

4.2. PIMC-QA applied to combinatorial optimization problems

In a quite general way, one could define a combinatorial optimization problem as the
algorithmic task of minimizing any given cost function which depends on the configuration
of variables assuming discrete values [4]. Further classifications are of course possible, but
they somehow hide the fundamental fact that it is straightforward to map such problems
over the search for the ground state of some Hamiltonian depending on Potts (or Ising) spin
degrees of freedom [7, 55]. This is the case, for instance, of the travelling salesman problem
[56–59], Boolean satisfiability [60, 61], vertex covering [62], graph colouring [63] and many
others.

Random problem instances are of particular interest, because they can be investigated
resorting to powerful techniques developed in the context of disordered statistical mechanics
systems [1]. The physical approach to combinatorial optimization has often allowed the
derivation of phase diagrams, telling us in which range of some control parameters hard
instances are expected to be found [7, 55]. These analyses provide insight about the typical-
case complexity of problem solving, in contrast to the more rigorous but less informative worst-
case complexity theory, which constitutes one of the corner stones of theoretical computer
science [2]. The basic distinction between the P and NP complexity classes (that is, between
problems for which a polynomial algorithm able to solve worst-case instances is or is not
known) can sometimes be misleading. Easy instances of NP-complete problems (the hardest of
all the NP problems, [3]) can easily be found (see e.g. [64]), while sometimes the optimization
of instances of problems in P can take an exponential time using local search techniques
(see e.g. [65]).

In the following, we shall briefly illustrate the results obtained on three classes of problems
which have been recently addressed using PIMC-QA.

4.2.1. Random ising spin models. Determining the ground state of an Ising spin glass model
can be an extraordinarily difficult task. To get the picture, it is enough to think that the number
of possible configurations of a very small 32 × 32 square lattice Ising model is of order 10308,
while the number of electrons in the universe is ‘just’ of the order 1080!3 It can be rigorously

3 Other examples of this kind can be found in the appendices of MacKay (2003) Information Theory, Inference and
Learning Algorithms (Cambridge, MA: Cambridge University Press).
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Figure 7. Residual energy per site for an 80 × 80 disordered 2D Ising model after CA and path-
integral Monte Carlo (PIMC) QA. We show the PIMC-QA data for the optimal value of PT = 1,
with T = 0.05 and P = 20 Trotter replicas. The actual inverse annealing rate τ used in QA has
been rescaled (multiplied by P) for fair comparison with CA. Still, QA is faster than CA.

shown that, in the 3D lattice case, the ground-state determination belongs to the NP-complete
complexity class [5], but here we shall report results on the simpler 2D lattice case, where EGS

can be calculated up to sufficiently large lattice sizes [66]. The Hamiltonian of an Ising spin
glass has been already discussed in section 4.1 and is given by equation (1).

For a given 2D lattice size L × L (L up to 80), and for various quenched realizations of
the random couplings Jij , drawn from a flat distribution in the interval (−2, 2), we carried out
several repeated classical and quantum annealings (for more details, see [35, 36]). At the end
of both QA and CA, the system remains generally trapped at energy Efinal = EGS + εres and
the efficiency of each protocol is monitored by considering the average residual energy εres(τ )

as a function of τ .
The annealing parameters T (CA) or � (QA) were decreased linearly from the initial value

of T0 = 3 or �0 = 2.5 down to zero, with a total of τ MC steps per spin. In QA we used fixed
values of Tq = PT = 1, 1.5, 2 at several P values and prepared the initial state (same for all
replicas) by a classical pre-annealing stage. The computational cost scales linearly with P, but
increasing P beyond a certain characteristic length (see inset in figure 7) does not produce any
further improvement. The choice of P = 20 was found to be optimal. The moves proposed in
both CA and QA are single-spin flip moves, but QA also attempts slightly more ‘global moves’
by proposing a spin flip for the spins sk

i , k = 1, . . . , P of all the Trotter replicas of a given
site i. Figure 7 shows that QA is definitely superior to CA in the case of the Ising spin glass,
in agreement with the experimental observation of significantly faster frequency-dependent
relaxations during QA of the disordered magnet [15]. Theoretical arguments, however, can be
given in favour of the fact that the residual energy will decrease, in both cases, logarithmically
slow [35]

εres(τ ) ∝ (log τ)−ζ ,

albeit with a possibly different annealing exponent ζ , which might favour QA over SA,
ζQA > ζCA.
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Very recently, PIMC-QA and CA have been extensively applied [37] to the problem of
finding the ground state of a random field Ising model (once again, a P-problem)

H = −J
∑
〈ij〉

σ z
i σ z

j −
∑

i

hiσ
z
i ,

for 1D, 2D and 3D cubic lattices, via the usual strategy, for QA, of adding and annealing a
transverse field term. The results of [37] seem to confirm that the log behaviour is present in
both cases, but that QA is indeed quantitatively better, with a larger ζ .

Finally, let us mention that there is an Ising model case where PIMC-QA might be possibly
worse than CA, according to [40]. This is the 1D Ising ANNNI model

H = −J1

∑
i

σ z
i σ z

i+1 + J2

∑
i

σ z
i σ z

i+2,

with the point J2 = J1/2 representing a highly frustrated case. While CA slows down only
close to the frustrated case J2 = J1/2, PIMC-QA seems to have a uniformly poor performance
even for small values of J2, deep in the ferromagnetic phase of the model [40].

4.2.2. Travelling salesman problem. Given N cities and their tabulated distances dij , TSP
consists in finding the shortest path connecting them, visiting each city only once and returning
to the starting point. An account of the vast literature about algorithms for TSP can be found
e.g. in [67], while three classical papers analysing physics approaches to the problem are
[57–59].

As a first step to a QA optimization we have to choose a representation for the classical
potential energy Hpot of a given configuration (in our case, the length of a tour), and, most
crucially, a suitable source of quantum fluctuations Hkin. TSP can be mapped to a highly
constrained Ising-like model—in a way similar to [56, 68]—in which each configuration of
the system (a valid tour) is associated with an N×N 0/1-matrix T̂ . For every ordered sequence
of cities, T̂i,j = 1 if the tour visits city i immediately after city j , and T̂i,j = 0 otherwise.
For the symmetric TSP problem we wish to consider (a TSP with symmetric distance matrix
dij = dji) the direct tour represented by a T̂ , and the reversed tour, represented by the
transposed matrix T̂ t , have exactly the same length. It is then convenient to introduce the
symmetric matrix Û = T̂ + T̂ t as representative of undirected tours. The length of a tour can
now be written as

Hpot(Û) = 1

2

∑
(ij)

dij Ûi,j =
∑
〈ij〉

dij Ûi,j , (38)

where 〈ij 〉 signifies counting each link only once. Hkin should be chosen in order to induce
fluctuations generating the important elementary ‘moves’ of the problem, changing a tour
into another one. Deciding which configurations are to become direct neighbours of a given
configuration is indeed a crucial step, because it determines the problem’s effective landscape
[69]. A very important move that is often used in heuristic TSP algorithms is the so-called
two-opt move, which consists in eliminating two links in the current tour, (c1 → c2) and
(c1′ → c2′), and rebuilding a new tour in which the connections are exchanged, (c1 → c1′)

and (c2 → c2′) (see figure 8). Associating a spin variable +1 (−1) with each entry 1 (0), the
whole two-opt move, when working with Û matrices, can be represented by just four spin-flip
operators

S+
〈c1′ ,c1〉S

+
〈c2′ ,c2〉S

−
〈c2,c1〉S

−
〈c2′ ,c1′ 〉,

where, by definition, each S±
〈i,j〉 flips an Ising spin variable (defined as Sz

〈i,j〉 = (2Ûi,j − 1) =
±1) at position (i, j) and at the symmetric position (j, i), i.e., S±

〈i,j〉 = S±
i,j S

±
j,i . However, this
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Figure 8. (a) (Left) Representation of an eight-city tour, with the corresponding matrices T̂in and
Ûin = T̂in + T̂ t

in. (Right) The final tour obtained when a two-opt move is performed, with a whole
section reversed (dotted line). The matrices T̂fin and Ûfin are shown, the circles indicating the
entries that have been switched (0 ↔ 1) by the two-opt move. The dotted circles in T̂fin are entries
related to the trivial reversal of a section of the tour. (b) Average residual excess length found after
CA and PIMC-QA for a total time τ (in MC steps), for the N = 1002 instance pr1002 of the
TSPLIB. PIMC-QA is once again faster than CA. (c), (d) the pr1002 instance considered, with its
optimal tour and best tours obtained in the QA (c) and CA (d) cases.

kinetic Hamiltonian does not allow for an obvious Trotter discretization of the path integral
(see discussion in section 4), and the PIMC scheme cannot deal with it (for this purpose,
Green’s function MC methods, that do not use a Trotter break-up, would be in principle more
effective, see section 5). We then introduce a drastic simplification to our kinetic energy term,
replacing it altogether with a standard transverse Ising form, arriving finally at the Hamiltonian

H̃ TSP =
∑
〈ij〉

dij

(
Sz

〈i,j〉 + 1
)

2
− �(t)

∑
〈ij〉

[
S+

〈j,i〉 + H.c.
]
. (39)

This simplified form of kinetic energy no longer fulfils the constraint to take a valid tour to
another valid tour, but this problem is avoided by proposing exclusively two-opt moves in the
MC algorithm [38].

We tested our QA algorithm against CA [38] on a standard benchmark TSP problem,
namely the printed circuit board instance pr1002 of the TSPLIB [70]. It is a structured TSP
problem with N = 1002 cities whose optimal tour length Lopt is known exactly. For CA,
we chose an optimal initial temperature T0 by first performing several CA with various short
cooling times τ and starting from sufficiently high temperatures. The point where the cooling



R418 Topical Review

curves for different τ s start to differ identifies an approximate ‘dynamical temperature’ Tdyn.
For pr1002, we obtained Tdyn ∼ 100. As expected [67], the optimal T0 for CA approximately
coincides with Tdyn. Not surprisingly, for QA the same choice PT ∼ Tdyn yields the optimal
results, together with the choice �0 = 300. Figure 8 shows the results obtained [38] for the
average percentage best-tour excess length εexc(τ ) = (L̄best(τ ) − Lopt)/Lopt, both with CA
(filled squares) and with QA (open circles). As a reference, the best out of 1000 runs of
the Lin–Kernighan algorithm (one of the standard local-search algorithms for TSP [67]) is
also plotted (dashed line in figure 8). The results show that, once again, QA anneals more
efficiently, even accounting for the extra factor P in the total CPU time (rightmost open circles),
reducing the error at a much steeper rate than CA.

4.2.3. Random Boolean satisfiability. In order to state the problem, consider a set of N
Boolean variables z1, . . . , zN , where zi = 1 or 0 (‘true’ or ‘false’). Denoting by ζi the
variable zi or its negation z̄i , one then considers the disjunction (logical OR) of three variables
C = (ζi ∨ ζj ∨ ζk), which is called a three-clause. The random 3-SAT problem consists
in deciding if the conjunction (logical AND) of M different clauses C1 ∧ C2 · · · ∧ CM—
each clause being formed by three variables extracted at random among the N available, and
appearing negated or direct with uniform probability—can be simultaneously satisfied by a
truth value assignment {zi}. (In the exact cover variant studied in [27], a clause C is satisfied
if one of the three variables is 1, the other two being 0.) If we associate an Ising spin variable
Si = (−1)zi with each Boolean variable zi , we can assign to any clause Ca involving three
variables zi, zj , zk an energy Ea given by

Ea = (1 + Ja,iSi)(1 + Ja,j Sj )(1 + Ja,kSk)

8
, (40)

where the coupling Ja,i assumes the value −1 if the variable zi appears negated in clause a,
+1 otherwise. Evidently, Ea = 0 if the corresponding clause is satisfied, Ea = 1 otherwise.

As in the case of TSP, archives of hard structured instances exist [71]. In addition,
statistical mechanics techniques can be used to determine the phase diagram of the random
3-SAT problem [7, 60, 61]. The main parameter determining the hardness of a formula is
the ratio α = M/N between the number, M, of clauses and the number, N, of variables. For
α < αc � 4.26 it is typically possible to find satisfying assignments, but instances particularly
hard to solve are expected to be found if α > αG � 4.15 [72]. It is expected that, due to the
proliferation of an exponential number of metastable states acting as dynamical traps, local
search gets trapped at an energy close to some finite threshold level, lower bounded by the
so-called Gardner energy [73]. The trapping effect induced by the threshold states cannot
be neglected when the instancesize is large (N � 10 000) and large statistical fluctuations
become sufficiently rare [72]. Smaller random formulae are, on the other hand, often easily
solvable by classical simulated annealing and cannot be used as significant benchmarks.

We performed a first set of annealings over a single hard 3-SAT random instance with
N = 104 and α = 4.24 [39]. The kinetic term was given by a simple transverse field inducing
single spin-flip fluctuations, like in the Ising case, since no clever sets of moves are known for
3-SAT, unlike the TSP case [74]. Using an efficient ad hoc algorithm (described in [72]), we
verified that the chosen formula was actually satisfiable, as expected from theory for α < αc.
As in the case of the TSP optimization, we set both T0 for CA and PT for QA equal to
Tdyn = 0.3. The optimal field-ramp range was found to be between �0 = 0.7 and �f � 10−3.

A comparison between the performance of the optimal CA and the optimal QA at P = 50,
both with and without global (i.e., all sk

i , k = 1, . . . , P , are flipped) moves [39], is shown
in figure 9. For each point, an average has been taken over 50 different realizations of the
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Figure 9. Comparison between optimal linear-schedule classical (CA) and path-integral Monte
Carlo quantum annealing (PIMC-QA) for a 3-SAT problem with N = 104 and α = M/N = 4.24.
CA always performs better than PIMC-QA simulated with P = 50 Trotter replicas. The average
performance of linear PIMC-QA is worse than that of CA, even if an improvement in the results
can be obtained by introducing global moves (G) and by increasing P (in the inset the final average
energy found by PIMC-QA after 2000 iterations for increasing P is plotted and compared with the
average result of a CA of the same length, dashed line). The solid triangles are the data obtained
by the field cycling PIMC-QA hybrid strategy described in [39].

same experiment; in the case of QA, a second average was performed among the energies
of the P replicas, which are in general different. It can be seen that the linear-schedule CA
always performs better than the linear-schedule QA. No further improvement can be obtained
for P � 100, see inset of figure 9—a much larger value than in the case of the Ising spin
glass and the TSP instance—but we chose P = 50 in order to extend the simulation time as
much as possible. The asymptotic slope of the linear-schedule QA curves seems indeed to be
definitely less steep than that of CA, independently of the number of replicas involved in the
simulation and of the use of global moves.

The sobering message converged by this failure is that superiority of QA over CA is
not universal, and is only achieved when we can use some understanding of the problem,
especially when building the kinetic energy operator.

4.3. PIMC-QA of a double-well: lessons from a simple case

We would like to finish our discussion about path-integral Monte Carlo -based QA by
mentioning recent results on a very simple case from which one can learn much about the
limitations of the method [42]. Suppose we want to perform a QA optimization of the simple
double-well potential which was investigated in section 2.2 using PIMC. One is then lead to
simulate the behaviour of a closed polymer made up of P Trotter replicas {xk}(k = 1, . . . , P )

of the original particle, held at temperature β/P and moving in the potential Vasym with a
nearest-neighbour spring coupling, as shown in equation (37). One can actually be more
sophisticated than that, and perform a higher order Trotter break-up, correct to O(β/P )4

instead of O(β/P )2, using, for instance, the Takahashi–Imada approximation [75]. Moreover,
instead of performing single-bead moves, i.e., moves involving a single xk at a time, one can
reconstruct, during the move, entire sections of the polymer, using the bisection method [29].
We have applied this rather sophisticated PIMC to our textbook double-well problem, working
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Figure 10. Comparison between the Schrödinger annealing data, solid triangles and different types
of PIMC-QA, on the double-well potential of section 2.2.

with a temperature T = 0.03 V0, a number of Trotter slices up to P = 160, and a bisection of
level up to 4, i.e., involving up to 24 +1 replicas xk at each move. The initial temperature value
of � = h̄2/2m was taken to be �0 = 0.5, and its value was reduced linearly to 0 in a certain
total number τ of Monte Carlo moves. The results, shown in figure 10 by solid circles, are
altogether disappointing: the data barely start to cross below the level εres ≈ 2δ = 0.2, which
corresponds to the metastable minimum of the potential, for the largest values of τ simulated.
This means that the system had no occasion, up to these large values of τ , of realizing that
there was another minimum available through tunnelling. Moreover, the overall slope of the
data is definitely less steep than that of direct Schrödinger annealing, shown for comparison
by solid triangles in figure 10. (The absolute values of τ are not comparable between the
two sets of data, because they refer to different quantities: a real Schrödinger dynamics
versus a Monte Carlo dynamics.) The situation improves substantially (see solid squares in
figure 10) if we introduce, as candidate Monte Carlo moves, also the so-called instanton
moves, i.e., basically classical trajectories that move from one minimum to the other (plus
fluctuations) [76]. This is, however, not a fair game: we have substantially exploited a crucial
information on the landscape which is generally not available for a complicated optimization
problem!

One other lesson we can learn, in the present context, is the role of the kinetic energy
operator Hkin on which the quantum fluctuations are based. Up to now, we were using as Hkin

the usual non-relativistic kinetic energy Hkin = p2/2m, and annealed the system by increasing
the mass m of the particle. (The propagator of this kinetic term is just the Gaussian, as shown
in equation (37).) Imagine now we pretend that the particle has a relativistic ‘photon-like’
dispersion

Hkin = �|p| → 〈xk| e− β

P
Hkin |xk+1〉 = 1

π

h̄�β/P

(xk − xk+1)2 + (h̄�β/P )2
, (41)

and that we anneal the system by reducing to 0 the velocity � of the dispersion. The bisection
method can be generalized for this kind of kinetic energy, and the results obtained are shown
by solid diamonds in figure 10. As one notes, the residual energy versus τ is now considerably
lower than in the non-relativistic (Gaussian) case, and even levels-off, for large τ , to the thermal
limit kBT /2 = 0.015 set by our finite temperature T. This example shows the important role
played by the choice of the kinetic energy Hkin (as well as the limitations imposed by the
unavoidable finite temperature T ).
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Figure 11. Sketch of the annealing of the transverse field �, linearly in a time τ = τ1 + τ2 + · · · τn,
or in a stepwise fashion.

Summarizing, PIMC-QA suffers evidently of a number of problems: (i) it is only a fake
Monte Carlo annealing dynamics, in principle not fully representative of the true imaginary-
time Schrödinger dynamics; (ii) the sampling of relevant ‘action’ might be highly inefficient
(recall the instanton problem above) and the cure for that might not be obvious at all; (iii)
the finite temperature T imposes a lower thermal limit for the residual energy εres(τ ) below
which we can never possibly go; (iv) the calculation of the propagator of e−Hkin/PT might be
very difficult for a kinetic term which we would like to implement (see section 2.2). These
various problems clearly call for an alternative to PIMC in order to implement a stochastic
QA approach. In principle, a useful alternative is given by a Green’s function Monte Carlo
(GFMC) method, which we now turn to discuss.

5. Green’s function Monte Carlo quantum annealing

Green’s function Monte Carlo is a very effective quantum Monte Carlo approach for correlated
quantum Hamiltonians on a lattice, the method of choice, for instance, for studying zero
temperature properties of Heisenberg spin models [77]. It is naturally a method that works
at zero temperature, by projecting out the ground-state wavefunction from an arbitrary
initial state. We now illustrate the general ideas behind a GFMC-based quantum annealing
approach.

5.1. Green’s function Monte Carlo quantum annealing: ideas

As outlined in the introduction, the ideal scope of a QA approach is to take some initial-state
|�(0)〉 and let it evolve according to the Schrödinger dynamics, see equation (2), associated
with a time-dependent Hamiltonian H(t) interpolating between an extreme quantum regime
and the classical problem one is interested in. For the random Ising problem, for instance, a
very natural choice is given by H(t) = −∑

〈i,j〉 Ji,j σ
z
i σ z

j −�(t)
∑

i σ
x
i , where �(t) is initially

very large, and slowly decreased towards zero in a given time τ , as sketched in figure 11. We
will use the Ising case, throughout this section, to exemplify the ideas of the method, which
can be adapted essentially to any other model in a straightforward way.
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We already argued, see section 2.3, that an imaginary-time Schrödinger evolution is, for
optimization purposes on a classical computer, equally good, and most likely even superior, to
the standard real-time evolution. With this in mind, we can aim at solving the imaginary-time
evolution in equation (6), instead of the real-time one in (2). If we also imagine the gradual
decrease of � to be made stepwise, as sketched in figure 11, then the solution for |�(t)〉 is
obtained by repeated applications of an imaginary-time evolution operator

|�(τ)〉 = e−H(�n)τn · · · e−H(�1)τ1 |�(0)〉, (42)

where τ = τ1 + · · · τn is the total annealing time, �1 > �2 > · · · > �n ∼ 0 is a decreasing
sequence of transverse fields and H(�i) is a shorthand for H(t) with a value �i of the transverse
field. Each application of the imaginary-time evolution operator e−H(�i)τi effectively tends to
filter out the corresponding ground state of H(�i) from the state to which it is applied. In
turn, e−H(�i)τi can be obtained by a repeated application of many infinitesimal propagators of
the type [1 − �tH(�i)], i.e.,

|�(t + τi)〉 = e−H(�i)τi |�(t)〉 = lim
m→∞ [1 − �tH(�i)]

m |�(t)〉, (43)

where �t = τi/m. The Green’s function Monte Carlo (GFMC) is just a stochastic technique
which implements equation (43). More precisely, if we define, recursively,

ψn+1(x
′) =

∑
x

G
(�)
x ′,xψn(x), (44)

where ψn(x) = 〈x|ψn〉, |x〉 is a shorthand for a generic spinconfiguration describing the
Hilbert space of the problem, and the Green’s function G

(�)
x ′,x is given by

G
(�)
x ′,x = 〈x ′|G(�)|x〉 = 〈x ′|1 − �t[H(�) − ET ]|x〉

= (1 + �tET )δx ′,x − �t〈x ′|H(�)|x〉, (45)

one can show that—for large n—the iterated state ψn converges (apart from a normalization
constant) to the ground state ψ

(�)
GS (x) of H(�), if �t is chosen to be suitably small [77]. (ET

is an estimate of the ground-state energy which allows us to reduce the statistical fluctuations,
see also [78].)

The problem in equation (44) looks superficially similar to an ordinary Markovian
master equation [44], with a few very crucial differences: (i) ψn(x) are not probabilities, but
amplitudes; (ii) the Green’s function G

(�)
x ′,x in equation (45), unlike the transition probability

of a master equation, is not necessarily made of non-negative elements, and is, in general, not
columnnormalized,

∑
x ′ G

(�)
x ′,x �= 1, unlike a Markov transition probability [44]. In summary,

the process underlying the iterated-power method is not a properly defined Markov chain, and,
therefore, it cannot be immediately simulated, as it stands, with a Monte Carlo approach.

Problem (ii) above can be quite serious: if some of the matrix elements of G
(�)
x ′,x are

negative, no possible interpretation of it as a ‘transition probability’ is possible. This is at
the heart of the so-called sign problem [78] in quantum Monte Carlo. In the following, we
will assume that a choice of basis is possible in which no sign problem exists, i.e., all matrix
elements of G(�) are non-negative, G

(�)
x ′,x � 0. This is certainly true for the Ising glass in a

transverse field. More generally, since the choice of the kinetic energy to be used in QA is at
our disposal, it is wise to choose the signs of Hkin in equation (1) such that no sign problem
occurs. Still, we miss the correct column-normalization:∑

x ′
G

(�)
x ′,x = 1 + �tET − �t

∑
x ′

Hx ′,x
def= bx �= 1. (46)

A way out of this difficulty is to factorize G(�) in terms of a stochastic matrix px ′,x—by
definition [44], a matrix with all positive elements px ′,x � 0, and with the normalization
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condition
∑

x ′ px ′,x = 1 for all columns—times the scale factor bx defined above. Indeed,
with the previous definition (46) of bx , the matrix

px ′,x = G
(�)
x ′,x

/
bx (47)

is trivially positive and column normalized and, therefore, it is a suitable transition matrix for
a Markov chain in x-space.

The crucial idea is then to extend the configuration space where the Markov process is
defined, adding to x a non-negative weight factor (hereafter, the weight) w. This extended
configuration space will be labelled by (x,w). The pair (x,w) is often called a walker, because
it will be the basic entity in the Markov chain ‘random walk’. The weight part will take care
of bx , while x will be taken care of by px ′,x . More precisely, if (xn, wn) indicates a walker at
iteration time n, in this extended configuration space, we set up the following Markov process:

(a) Generate xn+1 = x ′ with probability px ′,xn
.

(b) Update the weight with wn+1 = wnbx. (48)

In words, the walker performs a random walk in the Hilbert space (x) of the system and
in the weight space (w); such a random walk is composed of a standard Markov chain in
x-space, associated with px ′,x , and a multiplicative process for the weight wn → wn+1 = wnbx .
By moving in this way, the walkers visit every point in the (x,w)-space with a probability
Pn(xn,wn) whose first w-moment can be shown to be proportional to the wavefunction
ψn,ψn(x) ∝ ∫

dwnwnPn(x,wn) [79].
The algorithm in (48) is the basic version of a GFMC [77]. In this form, however, the

algorithm simply does not work in practice. The reason for this failure is not difficult to
grasp. While xn → xn+1 is a plain Markov process, the weight update wn → wn+1 = wnbxn

is a multiplicative process with random factors bxn
, which is prone to very large fluctuations

[77, 79]: wn might grow large, or become negligibly small, in just a few iterations of the
algorithm, and the whole method would go wild, because error bars in the calculations of the
averages grow in an uncontrolled way. The cure to this disease goes through the introduction
of many walkers, simulated in parallel, and through performing occasional ‘reconfigurations’
of their weights, via the so-called branching [78]. In practice, one propagates simultaneously
a set of M walkers defined by weights wi and configurations xi , for i = 1, . . . ,M . Before the
variance of the weights wi becomes too large, one appropriately redefines the set of walkers—
by reproducing some of them and deleting some others—in such a way as to drop those with
excessively small weight, and to generate copies of the more important ones4.

The analogy of such a many-walker GFMC with a genetic-like algorithm [80] is worth
noting. Each walker (x,w) plays the role of an individual that propagates (mutates) increasing
or decreasing its fitness—represented by the accumulated weight w, related to the wavefunction
amplitude ψ(x). A mutation is here simply a step of the algorithm, which attempts a single
spin flip of a certain site in the configuration, this is what the off-diagonal matrix elements
〈x ′|H |x〉 do for an Ising model in the transverse field. At certain times, branching occurs,
which modifies the population of individuals by favouring the survival of those with highest
fitness (largest w). The only genetic feature that is missing in the quantum mechanical case
is the possibility of cross-breeding (mixing of genetic codes of two configurations, to give
rise to new configurations); this would correspond to non-local moves which change the
configurations in a global way.

4 The branching is just a particular Markov process applied to the configurations (xj , wj ), which leads to new
walkers (x′

j , w
′
j ). Each new walker (x′

j , w
′
j ), with j = 1, . . . , M , will have the same weight w′

j = w̄ = ∑
j wj /M

and an arbitrary configuration x′
j picked up among the M possible old ones xk, k = 1, . . . ,M , with a probability pk

proportional to the weight of that configuration, pk = wk/
∑

j wj , see [79].
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The final, important, ingredient that makes the algorithm work is the so-called importance
sampling [30]. It can be seen, in the genetic analogy proposed before, as a way of proposing
mutations (single spin flips) that instead of being equally probable, with a common matrix
element �, are biased by a function which guides the system towards the most representative
configurations. More precisely, suppose we have a reasonable guess of the ground-state ψGS(x)

in the form of some nodeless wavefunction ψT (x), known as trial (or guiding) wavefunction. It
is then enough to substitute the Green’s function G(�) with the so-called importance-sampling
Green’s function,

Ḡx ′,x = ψT (x ′)G(�)
x ′,xψ

−1
T (x), (49)

which just rescales by an extra factor ψT (x ′)/ψT (x) a transition from x to x ′, thus favouring
those transitions x → x ′ where ψT (x ′)/ψT (x) is largest. In general, Ḡx ′,x is not symmetric,
but one can still apply to it the same decomposition in equation (47), defining the corresponding
Markov chain (48) with

px ′,x = Ḡx ′,x/b̄x,
(50)

b̄x =
∑
x ′

Ḡx ′,x = 1 + �tET − �t

∑
x ′ ψT (x ′)Hx ′,x

ψT (x)
= 1 − �t(EL(x) − ET ),

where the local energy EL(x) is defined as

EL(x) = 〈ψT |H |x〉
〈ψT |x〉 . (51)

Quite amusingly, if the guessed trial wavefunction ψT coincides with the ground-state
wavefunction ψT (x) = ψGS(x), then EL(x) = EGS and b̄x = 1 − �t (EGS − ET ) are
constant, and one can show that statistical fluctuations in the calculation vanish exactly. (This
is the so-called zero variance property [78].) Therefore, by variationally improving the quality
of the guiding wavefunction ψT (x) one can substantially improve the quality of the calculation
(e.g., reducing the error bars).

We will soon show that the use of a good importance-sampling guiding wavefunction
is indeed a crucial ingredient of a GFMC–QA application; without importance sampling,
GFMC–QA is simply worthless. Therefore, we start illustrating our application of GFMC on
the random Ising model with a discussion of possible trial wavefunctions we have tested, and
the difficulties encountered.

5.2. GFMC–QA on random ising model

Finding a good trial wavefunction for a random Ising model in a transverse field is a highly
non-trivial task. The first idea that comes to mind is a kind of ‘mean-field’ wavefunction,
made up of a product of single-site factors as

∣∣ψ(MF)
T

〉 =
N∏

i=1

(
e+ hi

2 |↑〉i + e− hi
2 |↓〉i√

2 cosh(hi)

)
, (52)

where {hi}, the local fields on each site i, are variational parameters to be optimized for each
given value of the transverse field �. The optimization of {hi} amounts to finding the minimum
of the variational energy,

E
(MF)
T ({mi};�) = 〈

ψ
(MF)
T

∣∣H ∣∣ψ(MF)
T

〉
= −

∑
〈i,j〉

Ji,jmimj − �
∑

i

√
1 − m2

i , (53)
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where mi = tanh(hi) are the local magnetizations. The stationary conditions required by the
minimization read

0 = ∂E
(MF)
T

∂hi

= −(
1 − m2

i

)
 ∑

j∈N (i)

Ji,jmj


 + �mi

√
1 − m2

i ∀ i, (54)

where N (i) indicates the set of nearestneighbours of site i. As it turns out, finding solutions
of equation (54) with optimal variational energies is simple only for large enough �, where
the quantum paramagnetic solution hi = mi = 0 is found. Such a solution, representing
the � = +∞ ground state with all spins aligned along the +x̂ direction, survives down to
some value �cr of the transverse field, below which non-trivial solutions of equation (54)—
with non-vanishing local magnetizations mi �= 0—start to appear. However, the number of
those solutions (local minima)—found for instance by a straightforward conjugate gradients
algorithm [8]—is large [81]. In the low-� region, our minimization problem is just the
quantum counterpart of the well-known Weiss mean-field approach for the classical random
Ising model [82], which is known to run into difficulties in the classical glassy phase. In a
sense, minimizing equation (53) in the low-� glassy phase is not much simpler than finding
the classical ground state of the problem for � = 0. We transformed a minimization task
in a discrete space of variables, Si = ±1, into one where the variables are continuous,
mi ∈ (−1, 1), but the task itself is of comparable difficulty. We refer the reader to [81] for
more details on this aspect.

A second, quite natural, choice of trial wavefunction that comes to mind is a Boltzmann-
like wavefunction of the form

ψ
(β)

T ({Si}) = N (β) e−(β/2)Hcl({Si }), (55)

where 1/β plays the role of an effective temperature, with β a variational parameter to be
optimized, and Hcl({Si}) (see equation (1)) is the classical energy of a given configuration
{Si}. N (β) is an appropriate normalization factor, which we will not need to calculate. Once
again, for large � we expect to find β = 0 (the exact � = +∞ solution), while, by decreasing
�, larger and larger values of β will favour regions where the ‘potential energy’ Hcl({Si}) has a
local minimum, until we get, for � = 0, to the asymptotic limit β → ∞ (ideally), required by
a wavefunction which is perfectly localized in the global minimum (see below for a discussion
of this point).

To calculate the expectation value of energy with the Boltzmann-like trial wavefunction
in equation (55), as a function of the single parameter β, we used a standard variational Monte
Carlo (VMC) algorithm [78]. Figure 12 shows (left panel) the optimal value βopt of β which
minimizes the variational energy E

(Boltz)
tot = 〈

ψ
(β)

T

∣∣H ∣∣ψ(β)

T

〉
, for several values of the transverse

field �. Note that βopt saturates for small � to about βopt ≈ 2, somewhat surprisingly at
first sight, since, for � → 0, one would expect βopt → +∞, in such a way that the classical
ground state dominates (i.e., equation (55) becomes a delta-like function localized in the
exact classical ground state). This is clearly an effect of a severe ergodicity loss of the VMC
algorithm, which is not difficult to understand. For a given β, indeed, the VMC samples
a probability distribution

∣∣ψ(β)

T (x)
∣∣2 = e−βHcl(x) with single spin-flip moves; its efficiency

in exploring the phase space, therefore, is exactly identical to that of a classical Metropolis
Monte Carlo at the temperature T = 1/β. Finding an optimal β for a given � is therefore
totally equivalent to asking what is the effective temperature of a classical Ising spin glass
which provides the best approximation to the wavefunction of a quantum Ising glass at zero
temperature and non-zero �. Now, from classical spin-glass physics [1, 83] we know that a
threshold energy Eth exists below which the system has a finite complexity, i.e., it displays an
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Figure 12. (Left) Plot of the optimal β, βopt, for the ‘Boltzmann’ trial wavefunction |ψ(β)
T 〉 defined

in equation (55), for several values of �. The dashed line is a fit to the data. (Right) The variation

residual diagonal energy ε
(Boltz)
res = 〈ψ(βopt)

T |Hcl|ψ(βopt)

T 〉/N − εGS corresponding to the βopt is
shown in the left panel, for several �. The dashed horizontal line represents the best residual
energy ever achieved, for � > 0.01, by employing the mean-field trial wavefunction in [52].

exponentially (∼ exp N) large number of metastable minima. Close to this threshold energy,
the relaxation of any local algorithm towards equilibrium becomes exceedingly slow—the
algorithm gets stuck for a long time in every minimum visited—and the average quantities
measured are not representative of their true thermodynamical values. Evidently, for � → 0,
the VMC algorithm does not visit the regions near the true minima of the classical energy, but
wanders in a high-energy band of metastable states, separated by moderate energy barriers. In
such a case, a small and finite value of β allows us to (still) overcome such barriers, so as to
find slightly more favourable local minima, while perfect localization (β → +∞) in a wrong
excited state would lead to an average bigger residual energy.

The right panel in figure 12 shows the optimal variational residual energy ε(Boltz)
res =〈

ψ
(βopt)

T

∣∣Hcl

∣∣ψ(βopt)

T

〉/
N − εGS corresponding to the optimal β shown in the left panel, for

several values of the transverse field �. For large � values, the variational residual energy
per spin is of order 1, as a random spin configuration would do. By decreasing �, we note
that the variational residual energy saturates, for small �, to finite non-zero values, of order
0.03 per spin, in agreement with the previously noted saturation in the optimal βopt, due to
ergodicity breaking. (A closer inspection shows that the variational residual energy is actually
non-monotonic for � < 0.25, again an artefact of sampling difficulties.) Note, however, that
this saturation value is definitely below the best results provided by the previously discussed
ψ

(MF)
T , which is of order 0.035 per spin (shown for comparison by a dashed horizontal line).

Therefore, with all its pitfalls, the Boltzmann-like trial wavefunction in equation (55) provides,
at low �, a marginally better approximation of the true GS, than that obtained by the mean-field
Ansatz in equation (52). Moreover, ψ(β)

T is also much better behaved, and simpler to optimize,
as far as the minimization problem is concerned. For these reasons, we decided to work out
our GFMC results using the Boltzmann-like wavefunction only.

We finally present the results of a GFMC-based QA approach, where the transverse
field � is decreased stepwise during the simulation, while, at the same time, the importance
sampling Boltzmann-like wavefunction is changed according to the corresponding value of
the variational parameter βopt(�). As a benchmark, we will compare GFMC-QA outcomes
with the path-integral Monte Carlo quantum annealing (PIMC-QA) and classical simulated
annealing (CA) results described in [35, 36]. We reduce the coupling � in equation (1) at
each Monte Carlo step (MCS) in a linear way. We start from an initial large enough value
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of the transverse field, �0 = 2.5, and then we set �n = �0(1 − n/τ) during the nth MCS
(0 � n < τ). τ is the total annealing time (see figure 11) measured as the total number of
MCS performed by the algorithm. We used M = 20 walkers, and performed branching at
each MCS, because the low � region is affected by severe weight instabilities which would
otherwise make the algorithm unstable (for the initial, large �, part of the annealing one could
consider branching less often, as weights are well under control). However, even with this
very conservative choice, the weights go sometimes completely wild if a � of order 10−7 is
reached (i.e., for long annealing times τ ). As a consequence, we decided to cut off the �n

annealing schedule in such a way that the final � is ≈10−4 and not 0. This finally guarantees a
good weight stability. (Whenever it was possible to perform annealings with smaller cut-offs
on �, and approximately the same slope 1/τ , we checked that the results obtained are not very
sensitive to the cut-off chosen.)

For each value of �n the trial wavefunction used is the Boltzmann-like one, defined in
equation (55), with a variational parameter βopt(�n), which corresponds to the instantaneous
optimal value. (Practically, we used for β(�) the fitting function shown in figure 12, left
panel.) Figure 13 shows the best residual energy per spin ever reached during the annealing
simulation, for several values of τ , averaged over ten independent repetitions of the whole
annealing process (due to computer-time limitations, a single run is shown for the largest,
τ > 108, annealings). For comparison, the CA and PIMC–QA data obtained in [35] are
also shown. Note first that the τ axes of the three calculations are completely unrelated.
The GFMC τ is measured in units in which a MCS is just a single spin flip, while MCS for
CA and PIMC–QA are intended as sweeps of the entire lattice of N spins (including all the
P = 20 Trotter slices, for the PIMC case). For this reason, we also present the CA and
PIMC–QA data in a shifted time axis where τ is multiplied by a factor N = 802 (rightmost
curves). Although the GFMC–QA data are strictly below both CA and PIMC–QA data, on
the same perspin timeunit (i.e., compared to the shifted CA and PIMC–QA data), it is clear
that the GFMCslope is still worse than that of PIMC–QA, and indeed surprisingly similar to
CA. Moreover, the CPUtime needed for a single spin flip in GFMC is much larger than the
corresponding single-spin move in CA or PIMC–QA (each GFMC move costs of order N
operations).

Let us pause to consider the similarity between the CA and the GFMC–QA slopes
that figure 13 suggests. This similarity must be somehow related to the fact that we
have used, as importance wavefunction for the GFMC, a Boltzmann-like wavefunction,
ψT (x) ∝ e−(β/2)Hcl(x). At the level of a plain variational Monte Carlo (VMC), we already
pointed out that such a choice of wavefunction amounts to sampling

∣∣ψ(β)

T (x)
∣∣2 = e−βHcl(x),

and is therefore totally equivalent to a classical Metropolis MC at temperature T = 1/β. If,
during the GFMC simulation, we neglect the weights associated with the walkers (as well as
the associated branching process), we will be carrying over a completely classical simulation
where the generated configurations are distributed (see equation (50)) according to

px ′,x = Ḡx ′,x

b̄x

∝ �
ψ

(β)

T (x ′)

ψ
(β)

T (x)
= � exp(−(βopt(�)/2)[Hcl(x

′) − Hcl(x)]).

As a consequence, the Markov process in x-space will obey a classical detailed balance
condition

px ′,x e−βoptHcl(x) = px,x ′ e−βoptHcl(x
′). (56)

In other words, a GFMC–QA without weights would be just a computationally heavy way of
doing a CA with a peculiar form of annealing of the effective temperature βopt(�) (note, in
passing, that such an effective temperature never gets too low, since βopt saturates to around
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Figure 13. The average best residual energy obtained by Green’s function Monte Carlo (GFMC)
QA for the 80 × 80 instance of the random Ising model studied in section 4.2.1, versus the total
annealing-time τ . Previous results obtained by classical simulated annealing (CA) and by path-
integral Monte Carlo quantum annealing (PIMC-QA) with P = 20 Trotter slices [35, 36] are
shown for comparison. The GFMC time-unit is a single spin flip, while CA and PIMC–QA Monte
Carlo time units are sweeps of the entire lattice (see [36]). Importance sampling is performed by
using the optimal trial wavefunction ψ

(Boltz)
T . The transverse field is linearly reduced down to 10−4

in a total annealing time τ , starting from �0 = 2.5. We used here M = 20 walkers and performed
branching at every Monte Carlo step (MCS) (tB = 1).

βopt ≈ 2 for low �). Quantum mechanics enters, therefore, only through the weights that the
GFMC carries over (and the unavoidable branching process which makes the multiplicative
process of weight updating numerically stable). Evidently, such a weight updating is, in the
present disordered case, not sufficiently strong and effective as to make the resulting averages
really different from the underlying classical physics governing the Markov chain in x-space,
and the resulting GFMC–QA data are rather close to the CA ones (although they are much
more computer-time demanding).

6. Summary and conclusions

We have illustrated several applications of quantum annealing strategies to a range of problems
going from textbook toy models—displaying in a clear way the crucial differences between
classical and quantum annealing—all the way to challenging optimization problems (random
Ising models, TSP, 3-SAT). The techniques used to implement QA are either deterministic
Schrödinger’s evolutions, for the toy models, or path-integral Monte Carlo (PIMC), and
Green’s function Monte Carlo (GFMC) approaches, for the hard optimization problems.

Worth mentioning, here, are a few other approaches or applications which we have had
no occasion to discuss so far. An alternative T = 0 projection QMC scheme (similar in spirit
to the GFMC discussed above, but not using importance sampling) is presented in [84], and
applied to an infinite range ±J spin glass model. Quantum annealing strategies have also been
applied to a one-dimensional kinetically constrained model [84, 85], based on Ising spins σ z

i ,
subject to a downward longitudinal field h, and experiencing a barrier for flipping, whenever
the neighbouring spin σ z

i−1 is ↓; based on a semiclassical treatment of the problem, it has been
shown [84, 85] that a quantum tunnelling of the barrier is more effective than the thermal
barrier jump in annealing the system towards the ultimate ground state, with all spins ↓.
Finally, let us also mention the application of PIMC–QA to problems of image reconstruction
and information processing [86].
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As a way of summary, we would like to mention here some of the major points touched
upon.

Is quantum really better? Although, in the examples illustrated, QA often wins over
CA, sometimes it does not (the negative result for the 3-SAT case is particularly instructive in
this respect). The fact that QA wins over its classical counterpart is a priori not guaranteed,
the outcome of the battle being strongly related to the landscape of the problem one deals
with. The role of the disorder is particularly crucial in the quantum case. Both the two major
algorithmic achievements of quantum computation, i.e., Grover’s and Schor’s algorithm, deal
with problems without disorder, where the intrinsic parallelism of a quantum algorithm can
be fully exploited. We suspect that even simple optimization problems, like for instance the
random Ising model in one-dimension, can be quite hard, if tackled by an adiabatic quantum
computation, precisely due to the all-important role played by disorder.

Role of kinetic energy. The choice of the kinetic energy is clearly all important in QA.
Section 4.3, illustrating the improvements in annealing a double-well potential upon using a
relativistic kinetic energy, is particularly instructive.

Concerning more technical points.
Limitations of PIMC. Path-integral Monte Carlo QA, although often successful over its

classical counterpart, suffers from several limitations (finite temperature T, possible sampling
problems for the action, difficulties with the Trotter break-up), which suggest investigating
alternative quantum Monte Carlo approaches to QA.

Limitations of GFMC. Green’s function Monte Carlo seems, in principle, a very good
tool for QA. However, GFMC needs, as a crucial ingredient, a reasonably good guess of trial
variational wavefunctions. Finding a good trial function ψT (x) for the problem at hand is
an essential part of a GFMC–QA application, and constitutes the delicate point of the whole
algorithm.

In conclusion, it is quite plausible that quantum annealing (adiabatic quantum
computation), although potentially useful and sometimes more convenient than classical
annealing, is not capable, in general, of finding solutions to NP-complete problems in
polynomial time. Nevertheless, understanding when and how quantum mechanics can
quantitatively improve on the solution of hard optimization problems is still an open and
timely issue. Moreover, there are fundamental physics issues behind the dynamics of quantum
disordered systems which certainly deserve further study.
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[36] Martoňák R, Santoro G E and Tosatti E 2002 Phys. Rev. B 66 094203
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[65] Mézard M, Ricci-Tersenghi F and Zecchina R 2003 J. Stat. Phys 111 505
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[72] Battaglia D A, Kolář M and Zecchina R 2004 Phys. Rev. E 70 036107
[73] Montanari A, Parisi G and Ricci-Tersenghi F 2004 J. Phys. A: Math. Gen. 37 2073
[74] Michalewicz Z 1996 Genetic Algorithms + Data Structures = Evolution Programs 3rd edn (Berlin: Springer)
[75] Takahashi M and Imada M 1984 J. Phys. Soc. Japan 53 3765
[76] Negele J W and Orland H 1988 Quantum Many-Particle Systems (Reading, MA: Addison-Wesley)
[77] Trivedi N and Ceperley D M 1990 Phys. Rev. B 41 4552
[78] Foulkes W M C, Mitas L, Needs R J and Rajagopal G 2001 Rev. Mod. Phys. 73 33
[79] Calandra Buonaura M and Sorella S 1998 Phys. Rev. B 57 11446
[80] Holland J H 1971 Associative Information Processing (New York: Elsevier)
[81] Stella L and Santoro G E Quantum annealing of an Ising spin glass by Green’s function Monte Carlo (in

preparation)
[82] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[83] Castellani T and Cavagna A 2005 J. Stat. Mech. P05012
[84] Das A and Chakrabarti B K 2005 Quantum Annealing and Related Optimization Methods ed A Das and

B K Chakrabarti (Berlin: Springer) p 217
[85] Das A, Chakrabarti B and Stinchcombe R B 2005 Phys. Rev. E 72 026701
[86] Inoue J-I 2005 Quantum Annealing and Related Optimization Methods ed A Das and B K Chakrabarti

(Berlin:Springer) p 171

http://dx.doi.org/10.1143/PTP.56.1454
http://dx.doi.org/10.1023/A:1004570713967
http://dx.doi.org/10.1088/1742-5468/2005/01/L01001
http://dx.doi.org/10.1126/science.1073287
http://dx.doi.org/10.1103/PhysRevE.66.056126
http://dx.doi.org/10.1103/PhysRevLett.84.6118
http://dx.doi.org/10.1103/PhysRevE.68.036702
http://dx.doi.org/10.1023/A:1022886412117
http://dx.doi.org/10.1007/BF02178370
http://www.arxiv.org/abs/quant-ph/0205020
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/
http://dx.doi.org/10.1103/PhysRevE.70.036107
http://dx.doi.org/10.1088/0305-4470/37/6/008
http://dx.doi.org/10.1143/JPSJ.53.3765
http://dx.doi.org/10.1103/PhysRevB.41.4552
http://dx.doi.org/10.1103/RevModPhys.73.33
http://dx.doi.org/10.1103/PhysRevB.57.11446
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1088/1742-5468/2005/05/P05012
http://dx.doi.org/10.1103/PhysRevE.72.026701


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 209801 (2pp) doi:10.1088/1751-8113/41/20/209801

Corrigendum

Optimization using quantum mechanics: quantum annealing through adiabatic
evolution
Giuseppe E Santoro and Erio Tosatti 2006 J. Phys. A: Math. Gen. 39 R393-R431

In our recent paper (Giuseppe E. Santoro and Erio Tosatti 2006 J. Phys. A: Math. Gen. 39,
R393-R431) we reviewed some of the recent work in the field of quantum annealing, alias
adiabatic quantum computation. Here we point out two early references, due to Apolloni, de
Falco and collaborators and dating back to 1988, where the idea of quantum annealing was
first put forward and tested on hard combinatorial optimization problems.

The idea of quantum annealing is an elegant and fascinating alternative to classical thermal
simulated annealing; it consists in helping the system escape the local minima using quantum
mechanics — by tunneling through the barriers rather than thermally overcoming them, with
an artificial and appropriate source of quantum fluctuations (the counterpart of the temperature)
initially present and slowly (adiabatically) switched off.

In our recent review on this subject [1] we erroneously indicated what appeared to us as
being the earliest references [2–4] in which similar ideas were first explicitly formulated, and
tested in numerical simulations.

We have in the meantime learned that the idea of using stochastic processes based on
quantum mechanics with the goal of minimizing classical complex functions was indeed
formulated and tested much earlier, in 1988, by the group of Apolloni, de Falco and
collaborators, who applied these ideas to combinatorial optimization problems like graph-
partitioning [5, 6].

We also stress that the idea of quantum annealing is inherently related to the idea of
adiabaticity. Computing by adiabatic evolution of a quantum system has become a quite
popular idea in the Quantum Computing community, where it is commonly known as adiabatic
quantum computation, and commonly traced back to Ref. [7]. Quantum annealing and
adiabatic quantum computation are, however, two names given by two different scientific
communities to the very same idea.
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